Visualizing Growth Using World Bank Development Indicators

Sean McSkeane, Albert Chu, Sonny Liu

World Bank Logo

Table of Contents

  1. Background
    • Introduction
    • Defintions
    • Libraries
    • Context
  • Data Processing
    • Data Collection
    • Creation of GDP Data
    • Creation of Miscellaneous Data
  • Exploratory Analysis and Data Visualization
    • GDP Statistics
    • GDP Box Plots
    • Observations
    • Miscellaneous Joint Plots
    • Observations
  • Analysis, Hypothesis Testing, and Machine Learning
    • Linear Regression
  • Insight and Policy Design
    • Summary
    • Insight

Background

1.0 Introduction

Economists are constantly making predictions about world economies with economic models and forecasts. In this analysis, we attempt to correlate the percentage growth of GDP per capita for nations using data provided by the World Bank. The World Bank is an international financial institution based in Washington D.C. that provides loans and grants to the governments of poorer countries for the purpose of pursuing capital projects. One of the major goals of the World Bank is to end extreme poverty in developing nations.

We use data provided from the World Bank's World Development Indicators to create our own custom comma-separated values (CSV) file for our own data analysis. According to the World Bank's website, "World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates."

In our analysis we visualize the growth of world economies by cleaning and reorganizing, plotting important economic factors across time, correlating other factors with gdp per capita, and using machine learning to predict future growth.

1.1 Definitions

Here are definitions of the datapoints we use directly taken from the World Bank.

GDP:

GDP stands for gross domestic product. It is used to measure the market value of all the final goods and services produced in a specific time period.

Per Capita:

Per capita simply is an economic term that means per person in a specefied area.

Final Consumption Expenditure:

Final consumption expenditure (formerly total consumption) is the sum of household final consumption expenditure (private consumption) and general government final consumption expenditure (general government consumption). This estimate includes any statistical discrepancy in the use of resources relative to the supply of resources.

General government final consumption expenditure (current US$):

General government final consumption expenditure (formerly general government consumption) includes all government current expenditures for purchases of goods and services (including compensation of employees). It also includes most expenditures on national defense and security, but excludes government military expenditures that are part of government capital formation. Data are in current U.S. dollars.

Foreign direct investment, net inflows (BoP, current US$):

Foreign direct investment refers to direct investment equity flows in the reporting economy. It is the sum of equity capital, reinvestment of earnings, and other capital. Direct investment is a category of cross-border investment associated with a resident in one economy having control or a significant degree of influence on the management of an enterprise that is resident in another economy. Ownership of 10 percent or more of the ordinary shares of voting stock is the criterion for determining the existence of a direct investment relationship. Data are in current U.S. dollars.

Exports of goods and services (current US$):

Exports of goods and services comprise all transactions between residents of a country and the rest of the world involving a change of ownership from residents to nonresidents of general merchandise, net exports of goods under merchanting, nonmonetary gold, and services. Data are in current U.S. dollars.

Imports of goods and services (current US$):

Imports of goods and services comprise all transactions between residents of a country and the rest of the world involving a change of ownership from nonresidents to residents of general merchandise, nonmonetary gold, and services. Data are in current U.S. dollars.

1.2 Libraries

The following python libraries used are listed below along with their official descriptions:

  • pandas - an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language (docs)
  • numpy - NumPy is the fundamental package for scientific computing with Python (docs)
  • matplotlib - Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms (docs)
  • seaborn - Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics (docs)
  • sklearn - Scikit-learn is an open source machine learning library that supports supervised and unsupervised learning. It also provides various tools for model fitting, data preprocessing, model selection and evaluation, and many other utilities (docs)
  • statsmodels - is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration (docs)
  • folium - makes it easy to visualize data that’s been manipulated in Python on an interactive leaflet map. (docs)
In [1]:
import pandas as pd
from pandas.io.json import json_normalize
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
from sklearn import model_selection
from statsmodels import api as sm
import folium
import json

1.3 Context

According to investopedia, "Economic forecasting is the process of attempting to predict the future condition of the economy using a combination of important and widely followed indicators. Economic forecasting involves the building of statistical models with inputs of several key variables, or indicators, typically in an attempt to come up with a future gross domestic product (GDP) growth rate. Primary economic indicators include inflation, interest rates, industrial production, consumer confidence, worker productivity, retail sales, and unemployment rates."

Economic predicitons are incredibly important for buisnesses and governments world wide. They want to manage their finances accoridingly so that they can encourage growth and mitigate losses. However, many descriped economic forecasting as unreliable. Investopedia goes on to even state that "Economic forecasting is often described as a flawed science." According to Bloomberg Buisness, "A recent working paper by Zidong An, Joao Tovar Jalles, and Prakash Loungani discovered that of 153 recessions in 63 countries from 1992 to 2014, only five were predicted by a consensus of private-sector economists in April of the preceding year." This shows that economies are far too complex for even large agencies to forecast accurately, and that economic models are often misleading.

Missed Predictions source from Bloomberg Buisness

In this project, we attempt to correlate GDP growth with several important key data points. This project will help us to get an intuition at the challenges economists face and also to see how far data science and programming can help amateurs like ourselves tackle on national economies.

Data Processing

2.0 Data Collection

The formula for calculating GDP is:

GDP = Consumption + Investment + Government Spending + Net Exports

therefore we concluded it would be best if we split the CSV into two dataframes which included GDP calculators and another dataframe from more miscellenous data.

We searched through the World Bank Development Indicators in order to find datapoints that matched the formula as close as possible. We also chose datapoints that we found interesting and/or could possibly have a correlation with GDP per capita and GDP growth. Our datset is availble here at the project's github page.

In [2]:
worldBankDevInc = pd.read_csv("WorldBankData/data.csv")

worldBankDevInc.dropna(inplace=True)
countryName = ""
first = True
newRows = []
countriesData = []

for index, row in worldBankDevInc.iterrows():
    if (countryName != row["Country Name"]):
        if (first == False):
            countriesData.append(df)
        countryName = row["Country Name"]
        df = pd.DataFrame(columns=worldBankDevInc.columns) 
        first = False
        
    df = df.append(row, ignore_index=True)

worldData = pd.concat(countriesData)
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
    display(df)
    display(countriesData[206])
Country Name Country Code Series Name Series Code 1960 [YR1960] 1961 [YR1961] 1962 [YR1962] 1963 [YR1963] 1964 [YR1964] 1965 [YR1965] 1966 [YR1966] 1967 [YR1967] 1968 [YR1968] 1969 [YR1969] 1970 [YR1970] 1971 [YR1971] 1972 [YR1972] 1973 [YR1973] 1974 [YR1974] 1975 [YR1975] 1976 [YR1976] 1977 [YR1977] 1978 [YR1978] 1979 [YR1979] 1980 [YR1980] 1981 [YR1981] 1982 [YR1982] 1983 [YR1983] 1984 [YR1984] 1985 [YR1985] 1986 [YR1986] 1987 [YR1987] 1988 [YR1988] 1989 [YR1989] 1990 [YR1990] 1991 [YR1991] 1992 [YR1992] 1993 [YR1993] 1994 [YR1994] 1995 [YR1995] 1996 [YR1996] 1997 [YR1997] 1998 [YR1998] 1999 [YR1999] 2000 [YR2000] 2001 [YR2001] 2002 [YR2002] 2003 [YR2003] 2004 [YR2004] 2005 [YR2005] 2006 [YR2006] 2007 [YR2007] 2008 [YR2008] 2009 [YR2009] 2010 [YR2010] 2011 [YR2011] 2012 [YR2012] 2013 [YR2013] 2014 [YR2014] 2015 [YR2015] 2016 [YR2016] 2017 [YR2017] 2018 [YR2018] 2019 [YR2019]
0 World WLD Adjusted net enrollment rate, primary (% of pr... SE.PRM.TENR .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 89.7470779418945 .. 89.8867263793945 89.73896 89.76079 90.09036 90.28756 90.44798 90.30999 90.5136 90.48209 90.45493 ..
1 World WLD Adjusted net national income (annual % growth) NY.ADJ.NNTY.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 3.82455669177821 5.53180688564998 6.29191447750782 -1.36409149911428 0.775066291042961 4.87383091854163 3.75054299401589 4.63630589579466 1.79554937138471 0.517066830716701 1.86491290260848 0.805927335815127 3.56140417297873 5.97931692584852 5.20987950069849 3.43433144008054 2.74956267290972 2.54309818952851 3.61798510751402 3.00650855197931 1.46301808779616 2.4680809839501 1.71835487641421 3.74858458862741 3.29835475775853 2.21669252517704 3.62068678447997 1.55599024690241 2.79115821485058 3.44953652132376 1.87066384914678 3.61999537345889 1.57430765382489 5.52540304277476 3.41670430543519 4.79799348316917 5.13918913741134 -0.108027864217718 -1.0217153334587 4.82408306126788 2.91431395916423 3.08983534636607 2.27578094371812 3.01262664499615 3.13334710859108 2.35749617104845 3.00433197520826 .. ..
2 World WLD Adjusted net national income (current US$) NY.ADJ.NNTY.CD .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
3 World WLD Current health expenditure (% of GDP) SH.XPD.CHEX.GD.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 8.56202153951592 8.9627248859483 9.30874245225373 9.458788244142 9.34750634702223 9.29471275406602 9.20008442422269 9.04112199123932 9.06090065244793 9.82514331356262 9.56935837112177 9.45270493564931 9.46374185948091 9.50753125576719 9.59698254405745 9.88628070186998 10.0231959648361 .. .. ..
4 World WLD Employment in agriculture (% of total employme... SL.AGR.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 43.8002650137584 43.6365914248492 42.8938027932221 42.2060851083481 41.3664043310787 40.6965624449873 40.2624711329534 40.2381994624912 40.1991446935927 40.0648979418348 39.7327187451559 39.508811405597 39.0601063609179 38.0021749104642 37.1021712566213 35.9629867428729 35.0148042564423 34.42401720717 33.8572454843509 33.1967643212232 32.2266382221097 31.2779769403582 30.5013693112494 29.7013114430674 29.1733692090603 28.8098172705724 28.4093104076149 28.2649635947778 28.1411866629902
5 World WLD Employment in industry (% of total employment)... SL.IND.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 21.6516925324977 21.527138324844 21.6117847103248 21.6964127337876 21.823627158468 21.8885375999451 21.787656173132 21.4629106755983 21.3136240854945 21.2086816957152 21.1149087439687 20.9815466985686 21.0058224818388 21.3241094091881 21.6263803354217 21.9834910554221 22.2665665618542 22.2982073045985 22.1614205882075 22.3498706986421 22.6792350814686 22.9096640861569 23.0275552536606 23.2210070720774 23.1806466409856 23.105875978489 23.0748891251629 22.9498246350747 22.8291833739327
6 World WLD Employment in services (% of total employment)... SL.SRV.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 34.5481369437425 34.8363221476465 35.4942497012682 36.0975310809452 36.8099384152528 37.4148610138978 37.9497001612886 38.2988328143032 38.4872289585557 38.7264541003861 39.1524242073817 39.5096367680363 39.9340769184264 40.6737616928555 41.2714385034704 42.0535163432295 42.7186294716704 43.2780004665421 43.9814271154991 44.4532708709787 45.0942780497361 45.8123736043997 46.4711018305852 47.0776974570266 47.6459613287286 48.0842975502874 48.5157871037455 48.7854215612607 49.0294793237334
7 World WLD Fertility rate, total (births per woman) SP.DYN.TFRT.IN 4.979307108885 5.00191978243415 5.02367146408933 5.04400040674044 5.05490891301623 5.03915577395467 4.99038258536087 4.97200862168929 4.92216247187193 4.85457238196183 4.77740726096387 4.66896402144656 4.53943728246075 4.41068383450602 4.2885892504327 4.15651327744316 4.04028538038847 3.93667877523915 3.84304686755108 3.77341369166979 3.71365928624454 3.65661971173965 3.62717669004806 3.59460070199888 3.56423664936055 3.5360250589397 3.49952261632233 3.45514978114433 3.39891207201347 3.3243087893291 3.2483556736806 3.15728608428153 3.07150626304713 2.98762638660655 2.9218663068883 2.86248058473237 2.81686061709299 2.77690516363071 2.74597320006002 2.7163022872551 2.69586251011468 2.66614672236542 2.64353726115005 2.62467609997849 2.60840174751692 2.58784841595025 2.57697124785772 2.566975770183 2.55491845917954 2.5341511670112 2.5162725848584 2.49867606841139 2.48925388225474 2.47289032143786 2.46559804914154 2.45602971225356 2.44521748363156 2.43158466293156 .. ..
8 World WLD GDP (current US$) NY.GDP.MKTP.CD 1370773175299.13 1428243252162.75 1533428552164.23 1651254441090.99 1809566507676.47 1970263431689.46 2137443239818.92 2274766100844.97 2454039687169.93 2702384325609.14 2967134190513.09 3277473529735.25 3780008408344.25 4607296495839.12 5313811666230.22 5916138399186.38 6436618979871.82 7280008873683.09 8570950836042.56 9958993254911.54 11219651208332.4 11616548460676.7 11507419044047.1 11739581031767.4 12172632270220 12786868776197.2 15109518321326.6 17186317201890.2 19226665300870.3 20068920934036.3 22603206098495.3 23942384829866.4 25425855198396.5 25838198034038.6 27753090818176.4 30865108095791.8 31549409160506.7 31435985940809.5 31367309193548.1 32529370037527.9 33581571601703.8 33382422263799 34669304532580.9 38899897038562.5 43811772234694.6 47459060744747.3 51442676003488.1 57968741828029.4 63616066492489.3 60340071198873.6 66036932045341.4 73357420394392 75045654452275.2 77189608277384.9 79296107902414.6 75003074210656.5 76102831192800.1 80891341462319.1 85804390603622 ..
9 World WLD GDP growth (annual %) NY.GDP.MKTP.KD.ZG .. 4.35975840188152 5.57589783213135 5.21735787229068 6.66471427898958 5.55901953472871 5.80277687909742 4.41418708917081 6.17799506138148 6.10989424564778 3.67551350685402 4.34201723410811 5.72561854441467 6.50688060060303 1.9981787361673 0.604285401850291 5.27355851107041 3.93272228011419 3.8893477766391 4.12280723200655 1.90410244952017 1.92649516152991 0.423561268331966 2.4136211184212 4.50889380516037 3.71650272931865 3.39386217399706 3.70378031859899 4.61704079470786 3.6757485987241 2.91246320175344 1.41916983646126 1.76719609878045 1.53418801877217 3.01192950529052 3.02900026581325 3.38157331830477 3.70442016199029 2.55621150976515 3.27180501749307 4.39462666013884 1.94530934997307 2.19230894771931 2.90909087568775 4.38346086916998 3.86850120583944 4.33338566251129 4.21775340750077 1.85380349999396 -1.68630880754442 4.27958636573598 3.11388632188054 2.51258721769445 2.65194436277218 2.83994006432333 2.8529393604575 2.56540895781401 3.16540231041313 3.03877529212566 ..
10 World WLD GDP per capita growth (annual %) NY.GDP.PCAP.KD.ZG .. 2.96546892976448 3.78632332497055 3.07027760261226 4.51897302590693 3.43351075792553 3.61808616431915 2.32032213633795 4.06289294488624 3.9131603865597 1.55227279684919 2.18847110725366 3.62034603454364 4.45220500206499 0.0507848306460517 -1.23810561170468 3.42618857153256 2.14540104013507 2.10453136582056 2.31999386406363 0.152197781559167 0.158993962531014 -1.35133746366949 0.619313810035919 2.71551344351812 1.93458390861669 1.59612661244456 1.88818915732828 2.79799486051803 1.90476330929779 1.15141407032107 -0.240609581662852 0.196219139350177 -0.0250873410803933 1.47063347835203 1.49539603485603 1.9011154138729 2.24559157004829 1.1484723474359 1.89479404707362 3.03190011389928 0.639372788718816 0.90436719475511 1.62689392122614 3.09014742073617 2.58895885791213 3.05137037875647 2.94519417957679 0.6065068533388 -2.87494508623649 3.03907181532541 1.92045246646602 1.31225641304724 1.44994609444937 1.63953252615742 1.66391263108147 1.3842033026543 1.99891054482104 1.90794569558348 ..
11 World WLD GDP per capita (current US$) NY.GDP.PCAP.CD 452.078267432285 464.738604766151 490.507281173762 517.418513114129 555.618724989832 592.778630064154 629.79808078489 656.819251902104 694.467750526003 748.914578702572 805.444855484229 871.325880387674 984.915582987193 1177.31341532866 1331.92642810845 1455.7455597655 1556.02307058378 1729.64372793428 2001.37168286414 2285.22514552985 2530.24050329355 2575.28677134525 2506.03680451145 2511.135314347 2561.08948864476 2643.89814686723 3070.38003596118 3431.72831278283 3772.80939627225 3871.91947092111 4279.82419214642 4459.20071683331 4662.39117405597 4665.24130313158 4936.01039999349 5407.78429596855 5448.52090244526 5352.56266383225 5267.55780622205 5389.865490032 5491.57433776819 5389.09056584462 5526.28659039417 6123.38607804621 6811.13518914085 7287.24927229487 7801.88318325694 8684.28580530388 9413.60305146436 8820.88480443134 9538.84677774956 10473.629966603 10589.2084720485 10764.1917661067 10928.8711624083 10217.6560130209 10247.9362255605 10769.6771083675 11298.3037067153 ..
12 World WLD Government expenditure on education, total (% ... SE.XPD.TOTL.GD.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
13 World WLD GNI (current US$) NY.GNP.MKTP.CD 1353201911072.14 1417375790025.72 1520733738365.07 1633855186714.56 1801174449952.18 1965325698282.86 2125600754198.07 2264821962966.59 2464392605896.97 2715332449292.85 2968862882540.16 3280123305001.94 3793070841579 4631644194748.78 5330145416165.49 5937950669651.34 6445729552599.81 7280068184932.13 8589426525716.66 9950827901034.49 11175370543105.5 11546813843369.9 11454299548757.5 11656570082242 12105839612460 12701915628067.9 15005516056275.5 17127310907266.9 19236189136563.1 20037012782209.7 22481806051411.6 23810871604597.9 25283802964915 25676187601182.4 27607333208063.7 30685935999144.4 31380903777597 31314769992131.2 31319588094203.2 32470194194666.5 33607032840931.9 33430154215867.4 34658987747292.7 38864235174296.5 43818615342020.8 47465527420361.8 51616834636543.5 57887893803283.7 63267795998076.1 60085886420508.5 65937314268491.6 73325001086892.5 75240627223508.7 77215677971082.2 79584856285100.5 75230895038336.9 76207049667172 81028716475503.4 85782348073056.2 ..
14 World WLD GNI growth (annual %) NY.GNP.MKTP.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 3.94149304567881 5.52178878023415 6.42545144666747 1.57121823878535 0.404048103001259 4.84788225551087 3.84975341098625 4.2322850532523 4.04868678753884 1.46980193646533 1.63016183183737 0.373537986546665 2.53714143475625 4.35788086446817 3.67088457022014 3.20565453355472 3.7239692807497 4.50538960452971 3.98743584297134 2.67434220397801 1.39091803291811 1.42097835955425 1.17102579647543 2.46175190173761 2.7850168009242 3.31821309661116 3.70644618777902 2.56003000785181 3.37552476449096 4.53064937712378 1.91822366408616 2.07963251736152 3.04162006774595 4.40300544555789 3.7860451294607 4.41888333280139 4.22686813440234 1.63675705773298 -1.69335549998851 4.346131938746 3.14678062030069 2.48784772311498 2.59219514909901 2.9967681511561 2.80000610895603 2.50515217830605 3.27879853102769 .. ..
15 World WLD GINI index (World Bank estimate) SI.POV.GINI .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
16 World WLD Inflation, GDP deflator (annual %) NY.GDP.DEFL.KD.ZG .. .. .. .. .. .. .. .. 3.30087965656164 4.12799326581198 4.97081360713582 5.37129353136317 6.35006203142651 11.8495145805618 16.5232627006031 11.7321265544005 9.92709445294086 9.70182241632143 8.63528208599602 12.3783334534306 13.3548204566528 10.616118414458 8.31478842761324 7.61155611426261 7.86933978213303 5.49479992742059 5.24813720273798 6.58634765129548 6.35023844073659 7.1477388276425 7.88026002769145 8.30606556055413 6.26513202693766 7.03444778805517 9.61873528010464 8.12044088256781 5.94287237693828 4.97756307644998 4.70089543415084 4.16270115905732 4.45102812237227 3.72253247753254 3.47395864102982 3.97494546858772 5.65948509574096 5.78125184255491 5.5100952832635 5.38532708658911 8.00292969929831 2.31126707753731 4.22978535176439 5.41240808398462 3.5448376456233 2.20688844074641 1.9840504083146 1.99138380254941 1.84318488695523 3.18531753663285 2.90144215595774 ..
17 World WLD Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 12.4820704034687 10.2588088556284 8.87302152363218 8.21765253688584 6.90605782140464 5.8231069401861 5.75646401118136 7.19696969696953 6.99909253326772 8.21553584747091 8.99846936747165 7.63610852336973 7.50539419087102 10.4646972118868 9.23032599768657 6.67821666426903 5.55413194762617 5.26968873695483 3.15566586772398 3.43351675547435 3.91959133653153 2.98157453936349 3.03213947342165 3.38264681884694 4.10725070715932 4.26717463390267 4.81023586325371 8.94995335353386 2.94426624988849 3.34686866964991 4.8394034987095 3.78180754679685 2.61343352710305 2.29406107225354 1.4316114581047 1.47171045649997 2.18736428915783 2.46594308994843 ..
18 World WLD Labor force participation rate, total (% of to... SL.TLF.CACT.NE.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 64.3172301677912 65.0027451208649 .. .. 64.782596272691 64.2078259337497 .. .. .. 64.261477458486 61.7744056876639 64.3801977310332 62.0037025842018 64.0524314111637 .. 64.25038194688 .. .. .. ..
19 World WLD Life expectancy at birth, total (years) SP.DYN.LE00.IN 52.5797665560172 53.0809343349998 53.4981944393904 54.0233981153183 54.6932412436179 55.3523672069119 56.0837873823687 56.7884010249067 57.3874659638846 57.9965553105424 58.5839631942626 59.1111292503844 59.5970696511051 60.0455773342288 60.5410031302235 60.9869594434047 61.408913624599 61.8326529080405 62.1933086727908 62.5552698689113 62.8415432629206 63.1823863438177 63.5087651240105 63.7568942236974 64.021453921459 64.2790358851828 64.5797725397353 64.8309406968281 65.0350060839402 65.2475565836275 65.4337949003055 65.6197545001043 65.7707300448984 65.8877433393925 66.0896508284926 66.2782187539162 66.5598428874379 66.8446197645551 67.0867869646409 67.2930943638593 67.5491888723492 67.8217284117182 68.070345020938 68.3269008231811 68.6522370741096 68.9202037747745 69.2622926355676 69.5919422232058 69.8991757971054 70.2464627373744 70.5561191281578 70.8840776397894 71.1717120220049 71.4622570224978 71.7419650515466 71.9478983340412 72.182171054675 72.3830086612671 .. ..
20 World WLD Unemployment, total (% of total labor force) (... SL.UEM.TOTL.NE.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4.39283726038932 .. .. .. .. .. 5.13208457075785 .. .. .. .. 5.37743925292043 .. .. .. 6.25119711284446 5.33382779343966 .. 5.29098802584712 5.59836947600857 .. .. .. .. .. ..
21 World WLD Population growth (annual %) SP.POP.GROW .. 1.35413306303749 1.72428742567341 2.08312267654296 2.05296820726136 2.05495180073049 2.1084067068122 2.04638236345993 2.03252283466928 2.11400924966694 2.09078604802886 2.10742572232947 2.03171722023158 1.96709639083836 1.94640551816912 1.86548774725264 1.78617223997206 1.74978132222286 1.74802858200974 1.761936541137 1.74924246108151 1.76469551664773 1.79921214102485 1.78326321518283 1.7459683688579 1.74810024565674 1.76949215525646 1.78194464308048 1.76953444311808 1.73788271179582 1.74100291824301 1.6637825949901 1.56790037101351 1.5596666337306 1.51895772917553 1.51100866842422 1.45283779639726 1.42678872608373 1.39175520458241 1.35140462193209 1.32262584850116 1.29763981747448 1.27639844849739 1.26167090781215 1.25454612647114 1.2472515417976 1.24405459160634 1.23615216555409 1.23977733493925 1.22382044705734 1.20392634281666 1.17094638950479 1.18478340333657 1.18481902825192 1.18104392200382 1.17004356040616 1.16551280316151 1.14309258131439 1.10877387593369 ..
22 World WLD Population, total SP.POP.TOTL 3032019978 3073077563 3126066253 3191186048 3256700083 3323623700 3393699205 3463147267 3533536526 3608235815 3683676306 3761307048 3837726171 3913217944 3989385034 4063806523 4136393107 4208770941 4282341460 4357793599 4434021975 4512268962 4593454253 4675367633 4756998073 4840155168 4925801334 5013576387 5102293348 5190965222 5281340078 5369210095 5453393960 5538448726 5622575421 5707533023 5790454220 5873071768 5954810550 6035284135 6115108363 6194460444 6273526441 6352677699 6432374971 6512602867 6593623202 6675130418 6757887172 6840591577 6922947261 7004011262 7086993625 7170961674 7255653881 7340548192 7426103221 7510990456 7594270356 ..
23 World WLD Real interest rate (%) FR.INR.RINR .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
24 World WLD Prevalence of undernourishment (% of population) SN.ITK.DEFC.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 14.8 14.9 15.1 15.1 14.9 14.5 13.8 13.1 12.6 12.3 11.8 11.6 11.3 11.1 10.8 10.6 10.7 10.8 .. ..
25 World WLD Lending interest rate (%) FR.INR.LEND .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
26 World WLD Imports of goods and services (% of GDP) NE.IMP.GNFS.ZS 12.0923071501307 12.4580275856774 11.8922137420278 12.2620483493167 12.1222012674284 12.0627632355252 12.5211634047162 12.4384012362278 12.9499301380972 13.1442492011069 13.4061607618949 13.3119890017087 13.2784758531716 14.5937797381338 17.8497406002088 16.7493348951241 17.1663342828209 17.3065070013061 17.0302528661971 18.2455618313175 19.8579899215527 19.9936680948214 19.3766332393635 18.8362878741519 19.4483669674229 19.3139507692489 17.9035383391568 18.2277341439608 19.1072382306816 19.6004883416557 19.4979357249034 19.3191361689021 20.407688404236 20.1646499686974 20.4480761043637 21.5192457816425 21.612863286217 22.459256665962 22.6584802871602 22.8350513442223 25.0834770366009 24.6399012812227 24.2930159156525 24.9274753462751 26.5515447114327 27.5242004855906 28.5638596944268 28.9011942617301 30.0609971879885 25.766938822846 28.0290378382087 29.9318675895759 29.9157130653828 29.6699618294553 29.5679689654292 28.5254523697469 27.6387632850213 28.5403417247808 .. ..
27 World WLD Imports of goods and services (annual % growth) NE.IMP.GNFS.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 5.51406087128443 8.26775931465697 11.5554156672121 5.45725117737351 -3.95594638844487 9.55751795836399 5.12867857625545 3.66284508749305 7.63687254705852 1.69478157636757 1.42734782871783 -2.44679035705424 1.49750955584855 8.01159571700052 3.67038819780024 5.45124775303651 6.75367017260213 8.217030756724 8.46371985375029 5.70312304442145 0.0973357154481391 3.01587648314251 1.51955538088555 9.03157646218504 9.40791899115348 6.81304341390154 9.84647113494488 5.12197002155177 5.29604530861417 12.4951544712696 0.488319733134659 2.84663156991411 5.49115836568438 10.6020631995959 8.35382019072372 9.01904561135143 7.68029138522519 3.06539570623178 -11.7815188357965 11.8529851551349 6.84112111190072 2.49424844015415 2.60240368049023 3.27029393392651 2.79207974861157 2.26856115254415 5.83554244355093 4.22908238978832 ..
28 World WLD Exports of goods and services (% of GDP) NE.EXP.GNFS.ZS 11.7645699775914 11.9204384233801 11.5753546101907 11.7601748985623 11.8097726543474 11.9697787513 12.1835752648743 11.935680693255 12.7737681633803 13.1061585999395 13.3451498259939 13.4807693811483 13.6931397381574 15.307125868183 17.2458638292632 16.323539826197 16.7158873363873 16.8013935646184 16.5008445832897 17.557112562714 18.8501744330749 19.0500151191489 18.6838500465206 18.4204966516432 19.2212888888629 18.8465843676821 17.4218321365344 18.0408264967346 18.7082978281594 19.1132226089519 19.3340777315656 19.2003114798352 20.6605311616384 20.1294393352552 20.8493734679349 21.85371376111 22.0416249805726 23.1662181400394 23.3755050002502 23.716646041839 26.0130527348843 25.2936554602561 25.2693953512526 25.7841453527451 27.4489227756275 28.5782851049403 29.7628832931135 30.0095437094545 30.6688712292546 26.4693785485204 28.7841649359811 30.4970116292513 30.5607251071775 30.3635634005764 30.1411588732874 29.2851383222497 28.4632387312008 29.3844950771349 .. ..
29 World WLD Exports of goods and services (annual % growth) NE.EXP.GNFS.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 6.1961418327992 8.83752801649523 10.6787149954341 9.18176504257744 -4.27487760004503 8.89927191014533 4.61424061846539 3.98773663783918 5.83477626592367 1.64181748797051 4.36174773926919 0.133949196576339 3.21350761277716 9.23771091559126 4.05358280759118 2.65881061246927 5.91398365770854 7.83985960429897 7.33057804886069 5.55735346498925 2.8418450616638 2.79775842603505 3.98170732332844 8.74961170891855 8.95574868228208 6.35578796412348 9.12881082122206 4.43682245929351 4.67504281421918 11.7960367955676 0.452846153327741 2.94896506368627 4.37768468673508 10.3264423155244 6.99638736985759 8.51619487383239 6.59556133358386 2.84545484551195 -10.1018340628738 11.4190356509051 6.64083714269475 2.85751462820905 2.9015056174317 3.62961978094876 3.43396140825658 2.71506947994192 4.99409502159065 4.34152564125962 ..
30 World WLD Foreign direct investment, net inflows (% of GDP) BX.KLT.DINV.WD.GD.ZS .. .. .. .. .. .. .. .. .. .. 0.498465264588723 0.478018184247547 0.428532659825414 0.497801571750183 0.507792893292085 0.490458457143426 0.356419357788199 0.392020662028983 0.417842330706829 0.454841181917436 0.51887499797573 0.628424923155909 0.505920337061896 0.433470680219851 0.496298693472949 0.458565148331922 0.595696373104685 0.7929899300027 0.843578350010997 0.988412664988919 0.906170871078706 0.647908362415043 0.617144386330659 0.835873533564089 0.888667652323933 1.05910975289024 1.17240807304481 1.48416402722819 2.19415042374254 2.98013265708625 4.41476677741277 2.42230437597039 2.16336205906103 1.87530991944077 2.24347911309922 3.28641920686954 4.27977353353935 5.32933186602893 3.784789075153 2.22034173718805 2.77458692910125 3.06252418717782 2.61767352946565 2.56342048680269 2.25321432122359 3.4157448799344 3.3353346479276 2.32516497379588 1.40232543808924 ..
31 World WLD Foreign direct investment, net outflows (% of ... BM.KLT.DINV.WD.GD.ZS .. .. .. .. .. .. .. .. .. .. 0.55542978176151 0.475947762293966 0.503191137179251 0.647895148733525 0.491569561667989 0.598176211680943 0.544374461650912 0.488154680110047 0.5407127976132 0.751890816052812 0.56864177857191 0.502918709508773 0.359410966908605 0.404388316587317 0.484091660169096 0.439605691764076 0.690945341939245 0.93613817786938 1.05957789882862 1.28017825205303 1.3063331668142 0.97499955729725 0.930578911651066 0.979686524536005 1.13859582116262 1.30325216024522 1.39845565085461 1.66607721965329 2.51347531728454 3.72934651624976 4.12371390904289 2.15999845644605 1.90779025828318 1.84486282731348 2.73105375803461 2.93624221880667 4.16073928382084 5.46034553195486 4.02962935441207 2.07017271404671 2.57437795316807 2.84103614372465 2.17869893659662 2.37165050381134 2.07135781781851 2.71189468555748 2.69171717090765 2.25222279082851 0.897036853204183 ..
32 World WLD Final consumption expenditure (% of GDP) NE.CON.TOTL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
33 World WLD General government final consumption expenditu... NE.CON.GOVT.ZS 13.3564544273649 13.6800077497012 13.6310231933199 13.8737359141045 13.5446088034853 13.557313483626 13.9106182081467 14.1567875410499 14.3553467898103 14.390371224312 14.7504657383985 15.1892560062596 15.2150906757791 14.8997529337868 15.284300781082 16.2310143725917 16.056045202 15.90155589649 15.9075525830439 15.791670966297 16.0101097271104 16.1837180259835 16.546582059119 16.5321059185269 16.2510632873038 16.2868277105731 16.3209492225093 16.1301060028079 15.7988137673018 15.8940006553963 16.1920589183246 16.4894002378504 16.4963575355254 16.6380258044736 16.2590005147579 16.1398217888908 15.9760225367244 15.9881909243938 16.0627662495608 16.1434114382071 16.0618791082626 16.3804622719473 16.6576475053905 16.6726596320666 16.4427537637202 16.3890833728391 16.3088750578412 16.2215229316076 16.5962235933862 17.8005711779493 17.4570560116525 17.1954171827615 17.1132732396031 17.0773770145316 16.9572032610725 17.0124999328203 17.0042517970756 16.8396682960705 .. ..
34 World WLD General government final consumption expenditu... NE.CON.GOVT.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 3.80398415965423 3.405522693821 3.50468153273494 3.0187117325743 6.0030964591357 2.92945260155588 2.26703360086115 3.43950312544069 2.88354094399406 2.64756845415275 2.74994107052173 2.39287190300578 2.0509053080627 1.5375355583477 3.74079285353639 3.60790456874702 3.04379852444472 2.0796141947533 2.89293022416712 2.3027150873105 1.75572099591695 1.30435127478761 0.885309210117086 0.964191116264729 1.12631926389794 1.24704117879637 1.65199276952164 1.95428718249511 2.69403517230253 2.25606249648639 2.81855346405831 2.85969999332785 2.11638240252343 2.14926575749044 2.05382196759112 2.31954824704319 2.44934886395242 2.60544212162091 3.31285244158342 1.32590841165512 0.580328126550981 0.918499203632095 0.778677519658856 1.10284441295553 1.5555545349319 1.48539485755255 1.39730141048801 .. ..
35 World WLD Final consumption expenditure (current US$) NE.CON.TOTL.CD .. .. .. .. .. .. .. .. .. .. 2211312321854.38 2459428170075.95 2824588340383.68 3386907538829.09 3906220285107.35 4478806222393.49 4824291418402.08 5447152854748.81 6402474475647.06 7416051648668.69 8402414218735.21 8648468815103.51 8756887285421.5 9025559288479.65 9244200134684.18 9749398562560.29 11560083316820.1 13096812624416.5 14511298937552.7 15069270755395.1 17062642156729.1 18120681828336.2 19313119983970.3 19721175496916.4 21105652803728.3 23314163323528 23861044151029.8 23754164699829.8 23831729789288.9 24790254258989.7 25485244817223.4 25647490259215.6 26767882870414.5 29971494945514.7 33364767298175.4 35903459243324.1 38470118481861.4 42977483100397.6 47157979774440.2 45967935557487.8 49288554136496 54154060306822.9 55211574185334.3 56741658806254.9 58195371086905.6 55182184531284.4 56268652223010.1 59298879627219.4 .. ..
36 World WLD General government final consumption expenditu... NE.CON.GOVT.CD 194367154939.238 206268368744.753 224311321852.735 243194536674.715 260951059596.715 285068460801.236 318980661906.597 352073705129.442 385898075340.929 422297837096.33 467343086586.392 530167353717.414 610394762764.262 726152802543.286 856017737370.271 1015129338242.13 1084745038859.52 1214178178359.27 1432226977243.41 1647785994561.03 1880865606377.24 1939842302772.64 1974924594078.23 2011137427871.43 2031238941401.48 2133971281825.74 2556568174502.12 2918135735596.3 3193100929079.46 3327123322188.47 3802477617357.6 4054981306670.65 4319386208833.75 4373173537662.12 4599200175078.64 5109057373644.98 5166952722049.39 5076925089371.28 5066832393814.1 5261903327540.95 5362951928828.29 5451955041048.3 5792778598796.39 6599627935818.01 7368815736249.65 7915949718720.86 8494196971520.6 9522037770830.78 10672772640460.4 10773636876241.4 11442775053575.3 12481348123393.1 12599921263327.5 12891125357847.6 13081225528326.8 12253741701450.9 12430340041889.2 13094165387158.2 .. ..
37 World WLD Foreign direct investment, net inflows (BoP, c... BX.KLT.DINV.CD.WD .. .. .. .. .. .. .. .. .. .. 10172428389.8738 11812145214.925 12203758691.1147 16983559108.8692 20149155514.0339 23152942623.4547 18450820895.9072 25242154691.5137 31742604141.583 40476999674.5631 51463516295.7739 66261443673.3665 53790951192.0012 47540791812.3294 57513140648.7982 55831322506.0848 84562500137.6235 128227304830.041 153269840471.101 189101407232.647 196314842872.543 147008507018.541 153248189091.157 211747657262.287 241856489978.782 319900395113.935 363575574036.756 461268353809.134 679307688135.391 961898356357.001 1480410290943.12 803639098976.185 754097049478.954 738923123013.63 1010648549752.37 1545811550537.04 2204644811721.93 3142186517392.34 2471810178040.99 1399593868855.47 1888612946788.66 2312074504071.17 2044185658889.08 2153929064559.63 1886398002411.46 2650906038743.83 2622858311094.84 1956815008965.09 1204501697250.46 ..
38 World WLD Foreign direct investment, net outflows (BoP, ... BM.KLT.DINV.CD.WD .. .. .. .. .. .. .. .. .. .. 13039559791.5289 12430444007.1125 15309373598.8249 23945359570.3968 20537319392.6422 27919351060.9959 27701050611.9379 28434013054.3409 37605198130.8917 61022352840.4782 55879736044.5119 51033838041.9834 36921979383.6836 42732452038.5692 53692074197.1001 51508915431.9036 95274410091.6365 149682382991.07 190469490277.976 244024940584.731 277921900954.417 220789757902.571 229760879207.494 253993539790.235 313392386445.739 400819716042.168 439272950162.428 525432072187.705 781207132800.063 1207483212327.9 1404703498796.3 738925055567.406 656802135475.86 725787822608.579 1196003249558.25 1400440276687.81 2152033405677.31 3195672616496.92 2595543523374.85 1279245325519.96 1750860111549.75 2127191733804.72 1672990538770.87 1936866172284.64 1734361668369.06 2151886354015.46 2067769739707.59 1848806097168.96 850923507246.462 ..
39 World WLD Exports of goods and services (current US$) NE.EXP.GNFS.CD 156050185151.614 162915633911.275 171680966487.766 187762340560.788 208355536583.804 227182002357.957 249492319701.368 264183499460.988 292072718824.645 330335002067.311 383185482789.925 429403614652.152 509959304303.242 698094877233.196 969046895229.801 1027768223533.2 1146717470586.4 1302050307765.92 1511105635659.91 1902330003651.91 2302901951002.42 2300663176917.75 2167002515278.92 2130065826414.62 2250804558853.66 2283668057539.56 2547111611636.76 3017192837966.86 3471269238320.95 3757852903729.25 4303852341878.49 4488872254703.51 5064830490372.83 4908884603679.38 5427043189964.97 6428228726806.19 6725015588833.52 6974934010625.96 6887850012227.02 7136268716783.77 7912760905643.28 7665587199648.44 8045998816654.28 9336575328552.4 11351930553199.5 12926160719625 14848915117471 17272453741790.9 19717942309625.6 15885947008123.4 18927109059806.8 22480490331759.7 22843187152937.5 23470693039897.1 23875134981461.2 21291951335020.6 20894625091430.1 22965978092339.1 25137299878781.8 ..
40 World WLD Imports of goods and services (current US$) NE.IMP.GNFS.CD 157366999586.133 163901454681.628 171396209102.365 188782033844.483 208386585910.38 225806042682.66 250979566626.31 268651011456.305 296194206655.955 334205994008.06 383320731583.116 426237675086.028 502914140943.833 682812331020.643 975098293130.156 1029865314776.81 1160011172348.72 1329397179243.6 1533134913058.71 1939470796129.77 2357150509200.86 2364974759654.52 2254800172524.04 2200196031502.76 2315528485590.24 2349449937289.01 2608370529514.76 3058697467808.77 3525518114583.27 3833647855141.72 4370900014055.62 4472846145096.67 4957686458244.84 4802520705258.13 5309330169171.21 6296402798517.53 6604663728730.55 6820384920591.78 6768538514101.24 7052379045326.24 7897097611818.54 7678839561467.74 7972741852189.93 9251322823328.45 11214025933774.5 12747488589323.7 14544697782497 16864948064547.5 19336215434763.9 15514231193786.5 18387700478767.3 21833841077947 22131828035490 22742489423376.1 23238850650477 20788169388509.2 20409063327491.2 22433821979042 24660208158920.7 ..
Country Name Country Code Series Name Series Code 1960 [YR1960] 1961 [YR1961] 1962 [YR1962] 1963 [YR1963] 1964 [YR1964] 1965 [YR1965] 1966 [YR1966] 1967 [YR1967] 1968 [YR1968] 1969 [YR1969] 1970 [YR1970] 1971 [YR1971] 1972 [YR1972] 1973 [YR1973] 1974 [YR1974] 1975 [YR1975] 1976 [YR1976] 1977 [YR1977] 1978 [YR1978] 1979 [YR1979] 1980 [YR1980] 1981 [YR1981] 1982 [YR1982] 1983 [YR1983] 1984 [YR1984] 1985 [YR1985] 1986 [YR1986] 1987 [YR1987] 1988 [YR1988] 1989 [YR1989] 1990 [YR1990] 1991 [YR1991] 1992 [YR1992] 1993 [YR1993] 1994 [YR1994] 1995 [YR1995] 1996 [YR1996] 1997 [YR1997] 1998 [YR1998] 1999 [YR1999] 2000 [YR2000] 2001 [YR2001] 2002 [YR2002] 2003 [YR2003] 2004 [YR2004] 2005 [YR2005] 2006 [YR2006] 2007 [YR2007] 2008 [YR2008] 2009 [YR2009] 2010 [YR2010] 2011 [YR2011] 2012 [YR2012] 2013 [YR2013] 2014 [YR2014] 2015 [YR2015] 2016 [YR2016] 2017 [YR2017] 2018 [YR2018] 2019 [YR2019]
0 United States USA Adjusted net enrollment rate, primary (% of pr... SE.PRM.TENR .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 81.6253967285156 .. .. .. .. .. .. .. .. .. .. 93.3478088378906 95.2786483764648 .. .. 98.8609085083008 98.8573913574219 .. 96.9185333251953 96.2886962890625 97.2522201538086 96.1293869018555 .. .. .. 97.71185 98.42669 97.36396 97.74179 98.06465 99.43481 99.30372 99.77238 99.62092 98.33983 97.63436 96.38975 97.26517 97.50924 97.97434 98.19414 99.64003 95.55776 .. ..
1 United States USA Adjusted net national income (annual % growth) NY.ADJ.NNTY.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 2.82072687989353 4.78293619252381 6.12444910299685 -4.41221612408582 -0.45080218246153 4.64086184304826 4.40860025267118 5.23352339631104 -0.760885569357512 -2.43005547342601 4.3242158204319 0.870203901637282 3.40326296506279 8.10674351658398 4.25066537828623 3.5814530772634 3.75845398650638 5.82824503108708 2.21138114914001 1.21768386051795 0.449947887381057 3.48067522642867 2.32026276379192 4.54252119324556 3.27148288766921 4.44954155767037 5.40268531470242 5.94581897679211 4.16749984921016 3.59713179891652 1.92304440239846 1.36977173138115 2.40007651531626 3.7122434677844 2.5171568336751 3.54982788692119 0.520708736578129 -2.42292639916755 -1.29630962630627 3.19978278462472 2.28606067023425 4.27359272268313 1.28811495974573 3.61811766052482 3.1843378764558 0.565980705380852 2.83426174365306 .. ..
2 United States USA Adjusted net national income (current US$) NY.ADJ.NNTY.CD .. .. .. .. .. .. .. .. .. .. 937510234909.97 1015409860355.56 1113237940032.86 1252476213205.58 1315564678836.84 1416531842515.86 1572330818506.82 1757061954579.54 1988493330853.55 2148972586425.86 2302714526273.35 2632733298444.46 2787751420783.85 2988711181122.32 3370698430676.17 3613579716247.4 3816375213867.74 4072933970058.58 4458697559759.45 4737937779807.58 4978802874389.38 5148953031205.18 5455783087975.63 5712110818966.12 6105794399121.82 6442201380022.6 6853506178065.24 7339074352162.23 7834962618624.28 8293245975623.27 8812709777888.21 9139188106939.03 9394461176709.74 9816428787969.95 10478036952207 11117320814516.6 11872790551256.1 12251856447577.3 12295805003953.1 12086574023079 12655135542015.3 13258084627100.6 14068520607491.8 14454861303519.9 15230832051674.8 15772023624639.7 15985139599881 16740180419866.7 .. ..
3 United States USA Current health expenditure (% of GDP) SH.XPD.CHEX.GD.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 12.5020673 13.16894835 13.95448455 14.45482881 14.53652482 14.54146429 14.65803467 14.89823642 15.29436988 16.34297083 16.41288147 16.36738026 16.36637753 16.33083781 16.50510561 16.81565916 17.07341533 .. .. ..
4 United States USA Employment in agriculture (% of total employme... SL.AGR.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2.77699995040894 2.74000000953674 2.58999991416931 2.76999998092651 2.75399994850159 2.71700000762939 2.62299990653992 2.56900000572205 2.45799994468689 1.61800003051758 1.51300001144409 1.5440000295639 1.49600005149841 1.46200001239777 1.40900003910065 1.38399994373322 1.29299998283386 1.33500003814697 1.34599995613098 1.41600000858307 1.45000004768372 1.38999998569489 1.30799996852875 1.35099995136261 1.42599999904633 1.44700002670288 1.43499994277954 1.42299997806549 1.4099999666214
5 United States USA Employment in industry (% of total employment)... SL.IND.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 25.4820003509521 25.257999420166 25.1860008239746 25.1340007781982 25.0219993591309 24.8390007019043 24.6650009155273 24.5179996490479 24.3719997406006 24.4230003356934 23.7350006103516 22.7430000305176 22.4549999237061 22.3770008087158 22.2849998474121 22.3560009002686 22.132999420166 21.4650001525879 20.0389995574951 19.6620006561279 19.7360000610352 19.7290000915527 19.9699993133545 19.992000579834 19.8729991912842 19.7740001678467 19.7290000915527 19.4370002746582 19.1760005950928
6 United States USA Employment in services (% of total employment)... SL.SRV.EMPL.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 71.7409973144531 72.0009994506836 72.2239990234375 72.0960006713867 72.2239990234375 72.443000793457 72.7109985351563 72.9120025634766 73.1699981689453 73.9589996337891 74.7519989013672 75.7129974365234 76.0490036010742 76.161003112793 76.3059997558594 76.2600021362305 76.5739974975586 77.1999969482422 78.6149978637695 78.9219970703125 78.8140029907227 78.8809967041016 78.7220001220703 78.6569976806641 78.6999969482422 78.7789993286133 78.8359985351563 79.1399993896484 79.4140014648438
7 United States USA Fertility rate, total (births per woman) SP.DYN.TFRT.IN 3.654 3.62 3.461 3.319 3.19 2.913 2.721 2.558 2.464 2.456 2.48 2.266 2.01 1.879 1.835 1.774 1.738 1.79 1.76 1.808 1.8395 1.812 1.8275 1.799 1.8065 1.844 1.8375 1.872 1.934 2.014 2.081 2.0625 2.046 2.0195 2.0015 1.978 1.976 1.971 1.999 2.0075 2.056 2.0305 2.0205 2.0475 2.0515 2.057 2.108 2.12 2.072 2.002 1.931 1.8945 1.8805 1.8575 1.8625 1.8435 1.8205 1.7655 .. ..
8 United States USA GDP (current US$) NY.GDP.MKTP.CD 543300000000 563300000000 605100000000 638600000000 685800000000 743700000000 815000000000 861700000000 942500000000 1019900000000 1073303000000 1164850000000 1279110000000 1425376000000 1545243000000 1684904000000 1873412000000 2081826000000 2351599000000 2627334000000 2857307000000 3207042000000 3343789000000 3634038000000 4037613000000 4338979000000 4579631000000 4855215000000 5236438000000 5641580000000 5963144000000 6158129000000 6520327000000 6858559000000 7287236000000 7639749000000 8073122000000 8577554463000 9062818211000 9630664202000 10252345464000 10581821399000 10936419054000 11458243878000 12213729147000 13036640229000 13814611414000 14451858650000 14712844084000 14448933025000 14992052727000 15542581104000 16197007349000 16784849190000 17521746534000 18219297584000 18707188235000 19485393853000 20494100000000 ..
9 United States USA GDP growth (annual %) NY.GDP.MKTP.KD.ZG .. 2.29999999999959 6.10000000000004 4.40000000000001 5.80000000000027 6.39999999999968 6.50000000000033 2.49999999999997 4.7999999999997 3.10000000000004 -0.254079592763361 3.29336237989513 5.2588953573494 5.64571947000461 -0.540546528852801 -0.205464013975075 5.38813922864261 4.62415920523873 5.53530269342748 3.16615027139846 -0.256751930206136 2.53771869588535 -1.80287445303816 4.58392731645819 7.2366199947577 4.16965595327123 3.46265171340774 3.45957255522859 4.17704638422782 3.67265632875832 1.88596032242019 -0.108259105278819 3.5224424944773 2.75284432715792 4.02883906403844 2.68428713129616 3.77250131913141 4.44721634281531 4.48140755494944 4.75323598915602 4.12748401255413 0.998340795722612 1.7416952495761 2.86121076695474 3.79889112654006 3.51321379694016 2.85497229206358 1.87617145780585 -0.136579805372577 -2.53675706551407 2.56376655847168 1.55083550620974 2.24954585216848 1.8420810704697 2.4519730360895 2.88091046576689 1.56721516988685 2.21701033035224 2.8569878160516 ..
10 United States USA GDP per capita growth (annual %) NY.GDP.PCAP.KD.ZG .. 0.618121192654655 4.4806693542335 2.90827194808763 4.34054896320295 5.07809761043288 5.27711385836417 1.38995128628363 3.75881936763196 2.0973697064788 -1.40937952140189 1.99561084037087 4.13808490301166 4.64215268759745 -1.44512926755014 -1.18458928312624 4.39146280930871 3.57715278544775 4.42298236582779 2.03389197378074 -1.20930049797576 1.53631967556218 -2.73455689809748 3.63199312996154 6.31215461386363 3.25065615566393 2.51089165696018 2.53894124951897 3.23540133656243 2.69817477473404 0.741481517405958 -1.43419451514943 2.09661470600186 1.4067579120287 2.76092754302428 1.46878726635107 2.57219576625936 3.19725295685198 3.27052404427648 3.55719309257685 2.97520862501813 0.00364897966078104 0.802103851870044 1.98092583376213 2.84268064170266 2.56350240668131 1.86795551434393 0.91186559723549 -1.07670008692052 -3.38743566007619 1.71674815960455 0.816231684539332 1.50217058243558 1.13849725776922 1.7026342478712 2.12512281587478 0.835127873259836 1.56444443084816 2.22182890954011 ..
11 United States USA GDP per capita (current US$) NY.GDP.PCAP.CD 3007.12344537862 3066.56286916615 3243.84307754988 3374.51517105082 3573.94118474743 3827.52710972039 4146.31664631665 4336.42658722171 4695.92339043178 5032.14474262003 5234.2966662115 5609.38259952519 6094.01798986165 6726.35895596695 7225.69135952566 7801.45666356443 8592.25353727612 9452.57651914511 10564.9482220275 11674.1863100131 12574.7915062163 13976.1097504641 14433.787727053 15543.8937174925 17121.2254849995 18236.8277265009 19071.2271949295 20038.9410992658 21417.0119305191 22857.1544330056 23888.6000088133 24342.2589048189 25418.9907763319 26387.2937338171 27694.853416234 28690.8757013347 29967.7127181749 31459.139002483 32853.6769849268 34513.5615037271 36334.9087770589 37133.2428088526 38023.1611144021 39496.4858751381 41712.8010675545 44114.7477776705 46298.7314440927 47975.9676758856 48382.5584490552 47099.9804711343 48466.8233750801 49883.1139837344 51603.4972614412 53106.9097703155 55032.9579979166 56803.4724334919 57904.2019610641 59927.9298339535 62641.0145699281 ..
12 United States USA Government expenditure on education, total (% ... SE.XPD.TOTL.GD.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 4.93105 4.96174 .. .. .. .. ..
13 United States USA GNI (current US$) NY.GNP.MKTP.CD 546400000000 566800000000 609200000000 643100000000 690700000000 749000000000 820100000000 867100000000 948600000000 1026000000000 1074359000000 1162926000000 1280507000000 1431848000000 1553300000000 1684554000000 1869603000000 2082670000000 2349856000000 2614202000000 2847055000000 3201886000000 3371448000000 3614168000000 4032292000000 4310074000000 4516535000000 4828878000000 5256093000000 5598381000000 5902290000000 6096750000000 6435469000000 6733768000000 7170251000000 7574691000000 8045907000000 8589268000000 9135464000000 9689354000000 10383859000000 10743709000000 11054325000000 11530268000000 12313988000000 13169702000000 14072966000000 14543216000000 14684602000000 14398708000000 15126736000000 15832207000000 16670651000000 17175898000000 18062432000000 18700478000000 19049435000000 19872232000000 20738399000000 ..
14 United States USA GNI growth (annual %) NY.GNP.MKTP.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 3.351440409342 5.27527386903013 5.87458063282564 -0.428476557970598 -0.431118085497445 5.51978744300897 4.69616860194699 5.4703247855014 3.466084352305 -0.283971760842505 2.3654916169759 -1.72800404314005 4.51205550877127 7.09976503113936 3.84671269526436 3.24138487259253 3.44773442901025 4.25276937931092 3.67941722232021 2.03021590282822 -0.174601965874615 3.48430223554854 2.73012761638765 3.88373477621531 2.73612704185793 3.7895159147489 4.33206907375671 4.39894654566415 4.8296949529896 4.20617108866715 1.12050808798172 1.69451819492204 2.95905584851293 3.93341142273604 3.46737809422761 2.61639423853792 2.27134188985107 0.148076553303042 -2.59118948581892 2.88909062244727 1.76173369193116 2.16476452534411 1.78665200339998 2.45947815860632 2.74983084567131 1.47885413288731 2.31971083369793 .. ..
15 United States USA GINI index (World Bank estimate) SI.POV.GINI .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 34.6 .. .. .. .. .. .. 37.5 .. .. .. .. 38.2 .. .. 40.2 .. .. 40.8 .. .. 40.4 .. .. .. 40.5 .. .. 41.1 .. .. 40.4 .. .. 41 .. .. 41.5 .. .. ..
16 United States USA Inflation, GDP deflator (annual %) NY.GDP.DEFL.KD.ZG .. 1.35015389642173 1.24463471200156 1.08838601136824 1.50393967901168 1.91982581124756 2.89877853468319 3.15127936555444 4.36718824053672 4.95848844957504 5.50416613424842 5.0691565769927 4.32276332461616 5.47988379941467 8.99868900031481 9.26262076155544 5.50338646438308 6.2133604430778 7.03383307421102 8.29659309976883 9.03303786925784 9.46217961376486 6.17822038216653 3.91677332399635 3.60771812238607 3.16244542868338 2.01389582864928 2.47249250103043 3.5274362718888 3.9203399863611 3.74333445824522 3.3817556733037 2.2789083785661 2.36928027421668 2.13537873987184 2.09683126892971 1.83103084839951 1.7243910667071 1.12552043198011 1.44380341841925 2.2354744101246 2.19342534103389 1.58176300763819 1.85709520301567 2.69221212452354 3.11494234240588 3.02620465080929 2.68627886271904 1.94513174783792 0.762349986740716 1.16525054555024 2.08890377615916 1.91784900692234 1.75491574880951 1.89189129292598 1.06934165943751 1.09352542361736 1.90077753783197 2.25530789041738 ..
17 United States USA Inflation, consumer prices (annual %) FP.CPI.TOTL.ZG 1.45797598627786 1.07072414764723 1.19877334820185 1.2396694214876 1.27891156462583 1.58516926383669 3.01507537688439 2.77278562259307 4.27179615288534 5.4623862002875 5.83825533848253 4.29276668813045 3.27227824655283 6.17776006377041 11.0548048048048 9.14314686496534 5.74481263549085 6.50168399472839 7.63096383885602 11.2544711292795 13.5492019749684 10.3347153402771 6.13142700027494 3.21243523316063 4.30053547523427 3.54564415209369 1.89804772234275 3.66456321751691 4.07774110744408 4.82700303008949 5.39795643990322 4.23496396453853 3.0288196781497 2.95165696638554 2.6074415921546 2.80541968853655 2.9312041999344 2.33768993730741 1.55227909874362 2.18802719697358 3.37685727149935 2.82617111885402 1.58603162650603 2.27009497336113 2.67723669309173 3.39274684549547 3.22594410070407 2.85267248150136 3.83910029665101 -0.35554626629975 1.64004344238989 3.15684156862206 2.06933726526059 1.46483265562714 1.62222297740821 0.118627135552435 1.26158320570537 2.13011000365963 2.44258329692818 ..
18 United States USA Labor force participation rate, total (% of to... SL.TLF.CACT.NE.ZS 59.4000015258789 59.2999992370605 58.7999992370605 58.7000007629395 58.7000007629395 58.9000015258789 59.2000007629395 59.5999984741211 59.5999984741211 60.0999984741211 60.4000015258789 60.2000007629395 60.4000015258789 60.7999992370605 61.2999992370605 61.2000007629395 61.5999984741211 62.2999992370605 63.2000007629395 63.7000007629395 63.7999992370605 63.9000015258789 64 64 64.4000015258789 64.8000030517578 65.3000030517578 65.5999984741211 65.9000015258789 66.5 66.5 66.1999969482422 66.4000015258789 66.3000030517578 66.6576995849609 66.7174987792969 66.8675003051758 67.2041015625 67.0856018066406 67.0832977294922 67.0735015869141 66.8243026733398 66.5823974609375 66.2436981201172 65.9935989379883 66.0468978881836 66.1791000366211 66.0397033691406 65.9942016601563 65.3695983886719 64.7054977416992 64.1091003417969 63.701000213623 63.2487983703613 62.8852996826172 62.6512985229492 62.7863006591797 62.851001739502 62.8708000183105 ..
19 United States USA Life expectancy at birth, total (years) SP.DYN.LE00.IN 69.7707317073171 70.2707317073171 70.119512195122 69.9170731707317 70.1658536585366 70.2146341463415 70.2121951219512 70.5609756097561 69.9512195121951 70.5073170731708 70.8073170731707 71.1073170731707 71.1560975609756 71.3560975609756 71.9560975609756 72.6048780487805 72.8560975609756 73.2560975609756 73.3560975609756 73.8048780487805 73.609756097561 74.009756097561 74.3609756097561 74.4634146341463 74.5634146341464 74.5634146341464 74.6146341463415 74.7658536585366 74.7658536585366 75.0170731707317 75.2146341463415 75.3658536585366 75.6170731707317 75.419512195122 75.619512195122 75.6219512195122 76.0268292682927 76.4292682926829 76.5804878048781 76.5829268292683 76.6365853658537 76.8365853658537 76.9365853658537 77.0365853658537 77.4878048780488 77.4878048780488 77.6878048780488 77.9878048780488 78.0390243902439 78.390243902439 78.5414634146342 78.6414634146341 78.7414634146342 78.7414634146342 78.8414634146341 78.690243902439 78.5390243902439 78.5390243902439 .. ..
20 United States USA Unemployment, total (% of total labor force) (... SL.UEM.TOTL.NE.ZS 5.5 6.69999980926514 5.5 5.69999980926514 5.19999980926514 4.5 3.79999995231628 3.79999995231628 3.59999990463257 3.5 4.90000009536743 5.90000009536743 5.59999990463257 4.90000009536743 5.59999990463257 8.5 7.69999980926514 7.09999990463257 6.09999990463257 5.80000019073486 7.09999990463257 7.59999990463257 9.69999980926514 9.60000038146973 7.5 7.19999980926514 7 6.19999980926514 5.5 5.30000019073486 5.59999990463257 6.80000019073486 7.5 6.90000009536743 6.11870002746582 5.65040016174316 5.45109987258911 5.00029993057251 4.51049995422363 4.21880006790161 3.99200010299683 4.73129987716675 5.78319978713989 5.9886999130249 5.52860021591187 5.08349990844727 4.6230001449585 4.62209987640381 5.7842001914978 9.25419998168945 9.63339996337891 8.94919967651367 8.0693998336792 7.37489986419678 6.16750001907349 5.28000020980835 4.86920022964478 4.35519981384277 3.89560008049011 ..
21 United States USA Population growth (annual %) SP.POP.GROW 1.70199277744096 1.65773003738953 1.53799735825387 1.43916476170683 1.38904605518369 1.25017164562845 1.1548931907552 1.08888120728762 0.998461043585335 0.977242811872469 1.16500266687286 1.26433369185094 1.07052275237269 0.954476728552297 0.913660196067714 0.985986067347125 0.950220048994522 1.00577199618134 1.0595730803427 1.10357656509899 0.959589922764484 0.981415437259678 0.953317566163514 0.914378513375149 0.865817336309961 0.886129040850881 0.924164157058979 0.893829201032046 0.907999040167679 0.944405555428529 1.12965052045579 1.33626074073779 1.38688569247935 1.31867999977741 1.2262960888682 1.19078709090209 1.16341161998189 1.20396029701272 1.16571452642589 1.14834004729055 1.11276899679534 0.989741382223669 0.927797485710314 0.859481712840946 0.925483968943482 0.921713167161207 0.964253917136075 0.951055242772428 0.945865287282592 0.876651298802912 0.829274641418094 0.726014423783411 0.733617006765134 0.693255124565919 0.734092816509704 0.737335445117428 0.723401199990637 0.640458800224899 0.619431053430858 ..
22 United States USA Population, total SP.POP.TOTL 180671000 183691000 186538000 189242000 191889000 194303000 196560000 198712000 200706000 202677000 205052000 207661000 209896000 211909000 213854000 215973000 218035000 220239000 222585000 225055000 227225000 229466000 231664000 233792000 235825000 237924000 240133000 242289000 244499000 246819000 249623000 252981000 256514000 259919000 263126000 266278000 269394000 272657000 275854000 279040000 282162411 284968955 287625193 290107933 292805298 295516599 298379912 301231207 304093966 306771529 309326085 311580009 313874218 316057727 318386421 320742673 323071342 325147121 327167434 ..
23 United States USA Real interest rate (%) FR.INR.RINR .. 3.10788487484426 3.2153459758718 3.37488224240526 2.95166899970862 2.5659131262603 2.64942062883468 2.40622703183624 1.86391124668405 2.85177336421877 2.28032119858687 0.622615406512059 0.887217687895321 2.40973233539542 1.65106970507992 -1.28142703497011 1.26689159505618 0.575074756170818 1.88990110356334 4.03451309824612 5.71642832840193 8.59458528912037 8.17739543939943 6.61817445122906 8.14107484507128 6.56332629234802 6.19386615913968 5.59256508008261 5.59036709159069 6.69069534210987 6.03974437600457 4.91535244969906 3.88424001691155 3.54668872933141 4.89835613788978 6.59406889916452 6.3240079485408 6.60340703888277 7.14819187462056 6.45713491363245 6.84484418308301 4.62675686802158 3.04507118283547 2.22410112174224 1.60458893755096 2.98135677955621 4.78644764786254 5.2234058889715 3.08241129153155 2.46882889649421 2.06073670870918 1.13733832071179 1.30708311258334 1.46929928661259 1.33289184236422 2.16748056788984 2.39198428674482 1.95865937145935 .. ..
24 United States USA Prevalence of undernourishment (% of population) SN.ITK.DEFC.ZS .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 .. ..
25 United States USA Lending interest rate (%) FR.INR.LEND 4.82083333333333 4.5 4.5 4.5 4.5 4.535 5.625 5.63333333333333 6.3125 7.95166666666667 7.91 5.72333333333333 5.24833333333333 8.02166666666667 10.7983333333333 7.8625 6.84 6.82416666666667 9.05666666666667 12.6658333333333 15.2658333333333 18.87 14.8608333333333 10.7941666666667 12.0425 9.93333333333333 8.3325 8.20333333333333 9.315 10.8733333333333 10.0091666666667 8.46333333333333 6.25166666666667 6 7.13833333333333 8.82916666666667 8.27083333333333 8.44166666666667 8.35416666666667 7.99416666666667 9.23333333333333 6.92166666666667 4.675 4.1225 4.34 6.18916666666667 7.9575 8.05 5.0875 3.25 3.25 3.25 3.25 3.25 3.25 3.26 3.51166666666667 3.89666666666667 .. ..
26 United States USA Imports of goods and services (% of GDP) NE.IMP.GNFS.ZS 4.19657647708448 4.02982424995562 4.13154850437944 4.08706545568431 4.09740449110528 4.23557886244453 4.5521472392638 4.63038180341186 4.94429708222812 4.95146582998333 5.19517787614495 5.35193372537237 5.80215931389794 6.39543530970074 8.24886441808829 7.28409452407971 8.067953018343 8.76360464323147 9.02577352686406 9.6171251923052 10.2833892192894 9.90813341390602 9.06707929238358 9.04332866084504 10.0333290981577 9.61583358665714 9.88872247567544 10.4776616483513 10.5795771858657 10.4763381889471 10.5603352862181 10.1255430017786 10.2416795967442 10.4974383102923 11.162311746182 11.8141577687958 11.9404364259576 12.3085665565188 12.3106298065852 12.9649624762195 14.3509112638306 13.1599745213201 13.022022958046 13.434030697806 14.7105439982785 15.5440202721268 16.2403265120172 16.4634878988385 17.4007349318961 13.6926857960849 15.7428942052039 17.2587550423633 17.0392649736644 16.4684827889121 16.4326312700215 15.2940089328528 14.6368656026944 15.0296987686965 .. ..
27 United States USA Imports of goods and services (annual % growth) NE.IMP.GNFS.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 5.33728874338986 11.2530744292334 4.64046119989752 -2.26533910799284 -11.114196399264 19.5533072081266 10.9320079115254 8.6670533259436 1.66279753026437 -6.65612032610974 2.61164519738917 -1.27294617394116 12.6191347868978 24.3431122802367 6.48954681721405 8.52929077155113 5.94276999991943 3.92810378542239 4.40374711157949 3.57707430369972 -0.149601338214509 7.009790952234 8.64665062852484 11.9283843884258 8.00083276062453 8.6965292836633 13.4673457969754 11.6887771292721 11.2984848241323 12.8850723141868 -2.80282567071022 3.63671444268007 4.9176854308145 11.3988270901858 6.52861883910828 6.63074982869641 2.49778132147785 -2.22674398375491 -13.0835019920727 13.1277364548894 5.63562943212455 2.70669069708065 1.54338042507985 5.07767143364657 5.45741651669557 1.89727614357811 4.56232850023306 .. ..
28 United States USA Exports of goods and services (% of GDP) NE.EXP.GNFS.ZS 4.96963003865268 4.8996982069945 4.80912245909767 4.87002818665832 5.10352872557597 4.98857066021245 5.01840490797546 5.04816061274225 5.08222811671088 5.08873418962643 5.56310752881526 5.40524531055501 5.53846033570217 6.68385043665671 8.19612190445127 8.23227910907684 7.9808926173207 7.6542900319239 7.947060702101 8.7590690791502 9.82645547013324 9.51777369925308 8.46973298853486 7.62226481946529 7.4891030913562 6.98807253964585 7.00925467575881 7.49591933621889 8.49052351999585 8.93879019707245 9.25473206751338 9.66090512231881 9.70891490564814 9.54718039168286 9.89314741556332 10.639223880261 10.7466355642836 11.119754518777 10.5152611231164 10.3085101834807 10.6927239610622 9.68298331038577 9.13224881991615 9.04306987207242 9.64186274172664 10.0119737683374 10.6598220961005 11.4923141737205 12.4860631262841 10.9488776594284 12.3150580752357 13.5305390136184 13.5289189711659 13.5445244354918 13.5319101631744 12.4321313132793 11.8541384848582 12.061213736453 .. ..
29 United States USA Exports of goods and services (annual % growth) NE.EXP.GNFS.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 1.73312036885196 7.79457081202048 18.818799728514 7.94279384827743 -0.640347553146398 4.36640330475448 2.40351812734205 10.5554759560864 9.90266391327886 10.7674506106749 1.21865486072056 -7.65677083985295 -2.59120464082373 8.15277826783792 3.35078823240565 7.66231430202855 10.9286357986066 16.2123795020457 11.5767889391918 8.82185705557012 6.61422322823275 6.92738217284146 3.27537788126529 8.8359154525137 10.2791010514579 8.17562909184484 11.9099103476879 2.33579487704925 4.981419749902 8.34422398017225 -5.78423611556305 -1.73692059034208 2.18253455725703 9.66825618095211 7.12786956209224 9.34282460898588 8.70182207139723 5.65816268464398 -8.39655287911218 12.1382521352288 7.13885208094113 3.40865170693306 3.57512504245246 4.29124510280765 0.573591392219114 -0.103125566608881 3.02413064214394 .. ..
30 United States USA Foreign direct investment, net inflows (% of GDP) BX.KLT.DINV.WD.GD.ZS .. .. .. .. .. .. .. .. .. .. 0.117394622021927 0.0746877280336524 0.105542134765579 0.148732685270413 0.215500086394179 0.151937439759179 0.17348025954782 0.139300786905342 0.248766902860564 0.331134145868017 0.5925159599581 0.785458999289688 0.373049854521323 0.28810926027741 0.613233611046923 0.461168399293935 0.773402922637217 1.20429270382465 1.10258156403265 1.20976747648708 0.813161647614077 0.376413030646159 0.303819118274283 0.749136954278588 0.633024647479511 0.75656935849594 1.07170435427583 1.23100355066787 1.97543408498145 3.00543133816141 3.41449672398593 1.62042991971311 1.00093092135092 1.02202397895235 1.74918730740378 1.09187641523892 2.16048784186236 2.39839738537714 2.31832810877764 1.11484356472059 1.76119311216454 1.69532330722204 1.5456250318702 1.71661357655606 1.43739095592604 2.79421858967316 2.64304284422036 1.82007611791433 1.26080188932424 ..
31 United States USA Foreign direct investment, net outflows (% of ... BM.KLT.DINV.WD.GD.ZS .. .. .. .. .. .. .. .. .. .. 0.604675473747861 0.482465553504743 0.573054702097552 0.655265698313989 0.333928061799989 0.81488322183341 0.604245088640406 0.541832026307674 0.611073571642104 0.940877711018089 0.666361717519328 0.315243766685937 0.232490746276156 0.241329342180792 0.317514333344974 0.0848125791804939 0.426322557428754 0.819675338785203 0.414422934063193 0.903647559726176 1.00517445159802 0.800080673854023 0.901335163098415 1.20725067758402 1.23489893836291 1.44062324560663 1.2760862526294 1.41508865403983 1.92831849796882 2.56976045274847 1.81782793658698 1.38011212336093 1.63659602943375 1.70373402834287 3.06216058583438 0.403409153556384 2.05435383953247 3.62507005284057 2.33525889378276 2.16346078606036 2.33342295661738 2.80916018438941 2.32907222841564 2.34018188399344 2.21170303569922 1.68533390809563 1.70158121039509 1.97364242622579 -0.382822373268404 ..
32 United States USA Final consumption expenditure (% of GDP) NE.CON.TOTL.ZS 76.6795508926928 76.6731759275697 76.251859196827 76.1039774506733 75.8675998833479 75.3798574694097 75.2760736196319 76.3374724382035 76.9124668435013 76.9977448769487 78.2174278838315 78.0269562604627 77.6829983347797 76.3798464405182 77.3578006824817 78.7743396656427 78.0486620134813 77.5830448846349 76.2469281539922 75.7469358673088 77.146662924215 76.11350272307 78.5272635324777 79.1680769436093 77.4484330221841 78.4394208868031 79.1388432823518 79.3615112821986 79.2612650049518 79.0237132150922 79.7763730005514 80.3540490951066 80.4551980291786 80.5566300442994 79.9900812873358 79.9022716584013 79.4919734893143 78.7790742588492 78.8370221453623 79.23607178013 79.9830441609083 81.3000586157408 82.1816259565578 82.6487470578517 82.4101130691301 82.1517109613565 82.0412942525059 82.3786842116671 83.7956613256529 84.9392199324697 84.6847275098968 84.6247023707987 83.4894601738567 82.5102200396952 82.1221330423795 81.8211346034074 82.4623177262855 82.383046096492 .. ..
33 United States USA General government final consumption expenditu... NE.CON.GOVT.ZS 15.6451316031658 15.9595242322031 16.24524871922 16.2073285311619 15.9084281131525 15.7321500605083 16.3067484662577 17.4538702564698 17.7718832891247 17.7272281596235 17.9618430210295 17.9387904021977 17.6292891150878 16.7762751723054 17.1626727964469 17.6107956298994 16.7879782984202 16.3879690233478 15.7667187305319 15.4036372992547 15.876837875664 15.8102388431458 16.5838514332095 16.3837857501765 15.7203773615748 15.9171086101131 16.1145952588757 16.0012069496407 15.6681698513379 15.6237968795976 15.9007731491978 16.3175698333049 16.0786874646011 15.6452689260237 15.2060534337024 14.9447710913016 14.5283200229106 14.2293238156033 13.9868964651795 14.0372561190458 14.0260099998519 14.528614139578 15.0418614345097 15.2465423026494 15.1688806727392 15.0552977264339 15.0083193646608 15.2147973022141 15.9887101811824 16.8220241300482 16.7431574962336 16.1604689928469 15.5336041145609 15.0850685123135 14.6400873624234 14.3403223310566 14.2163962140727 14.0169299148115 .. ..
34 United States USA General government final consumption expenditu... NE.CON.GOVT.KD.ZG .. .. .. .. .. .. .. .. .. .. .. 0.0848147444916236 0.362414224746033 -0.856463385096234 2.15996011063939 2.44051523942788 0.00131139106707678 1.77619246643239 1.77891006241259 0.765281361150798 1.49813884764704 1.60193924109775 2.33013191625113 3.02474308852881 1.49913843210574 4.80872927237182 4.58852242269651 1.95754733051371 1.98510323614731 3.07529756739251 2.74364655060482 1.74458726758826 0.650199744731367 -0.0553640743081019 0.516573882643257 0.271220934540111 0.449847082559771 1.83775173494611 1.872616214186 2.73725749981166 1.53600830405598 3.5059396445031 3.84223674868522 1.83892815255997 1.54374308945823 0.838771841641588 1.22146958353761 1.59956869011977 2.37181389414454 4.13738975817661 0.109780460478575 -3.01836796947424 -1.45847375954774 -1.89639897628948 -0.820495035152675 1.67339729227336 1.46859414964777 -0.0929705081806844 .. ..
35 United States USA Final consumption expenditure (current US$) NE.CON.TOTL.CD 416600000000 431900000000 461400000000 486000000000 520300000000 560600000000 613500000000 657800000000 724900000000 785300000000 839510000000 908897000000 993651000000 1088700000000 1195366000000 1327272000000 1462173000000 1615144000000 1793022000000 1990125000000 2204317000000 2440992000000 2625786000000 2876998000000 3127068000000 3403470000000 3624267000000 3853172000000 4150467000000 4458186000000 4757180000000 4948306000000 5245942000000 5525024000000 5829066000000 6104333000000 6417484000000 6757318000000 7144856000000 7630960000000 8200138000000 8603027000000 8987727000000 9470095000000 10065348000000 10709823000000 11333686000000 11905251000000 12328725000000 12272811000000 12695979000000 13152863000000 13522794000000 13849216000000 14389232000000 14907236000000 15426381000000 16052661000000 .. ..
36 United States USA General government final consumption expenditu... NE.CON.GOVT.CD 85000000000 89900000000 98300000000 103500000000 109100000000 117000000000 132900000000 150400000000 167500000000 180800000000 192785000000 208960000000 225498000000 239125000000 265205000000 296725000000 314508000000 341169000000 370770000000 404705000000 453650000000 507041000000 554529000000 595393000000 634728000000 690640000000 737989000000 776893000000 820454000000 881429000000 948186000000 1004857000000 1048383000000 1073040000000 1108101000000 1141743000000 1172889000000 1220528000000 1267607000000 1351881000000 1437995000000 1537392000000 1645041000000 1746986000000 1852686000000 1962705000000 2073341000000 2198821000000 2352394000000 2430603000000 2510143000000 2511754000000 2515979000000 2532006000000 2565199000000 2612706000000 2659488000000 2731254000000 .. ..
37 United States USA Foreign direct investment, net inflows (BoP, c... BX.KLT.DINV.CD.WD .. .. .. .. .. .. .. .. .. .. 1260000000 870000000 1350000000 2120000000 3330000000 2560000000 3250000000 2900000000 5850000000 8700000000 16930000000 25190000000 12474000000 10470000000 24760000000 20010000000 35419000000 58471000000 57736000000 68250000000 48490000000 23180000000 19810000000 51380000000 46130000000 57800000000 86520000000 105590000000 179030000000 289443000000 350066000000 171471000000 109466000000 117106000000 213641000000 142344000000 298463000000 346613000000 341092000000 161083000000 264039000000 263497000000 250345000000 288131000000 251856000000 509087000000 494439000000 354649000000 258390000000 ..
38 United States USA Foreign direct investment, net outflows (BoP, ... BM.KLT.DINV.CD.WD .. .. .. .. .. .. .. .. .. .. 6490000000 5620000000 7330000000 9340000000 5160000000 13730000000 11320000000 11280000000 14370000000 24720000000 19040000000 10110000000 7774000000 8770000000 12820000000 3680000000 19524000000 39797000000 21701000000 50980000000 59940000000 49270000000 58770000000 82800000000 89990000000 110060000000 103020000000 121380000000 174760000000 247485000000 186370000000 146041000000 178985000000 195218000000 374004000000 52591000000 283801000000 523890000000 343583000000 312597000000 349828000000 436616000000 377240000000 392796000000 387529000000 307056000000 318318000000 384572000000 -78456000000 ..
39 United States USA Exports of goods and services (current US$) NE.EXP.GNFS.CD 27000000000 27600000000 29100000000 31100000000 35000000000 37100000000 40900000000 43500000000 47900000000 51900000000 59709000000 62963000000 70843000000 95270000000 126650000000 138706000000 149515000000 159349000000 186883000000 230130000000 280772000000 305239000000 283210000000 276996000000 302381000000 303211000000 320998000000 363943000000 444601000000 504289000000 551873000000 594931000000 633053000000 654799000000 720937000000 812810000000 867589000000 953803000000 952979000000 992778000000 1096255000000 1024636000000 998741000000 1036177000000 1177631000000 1305225000000 1472613000000 1660853000000 1837055000000 1581996000000 1846280000000 2102995000000 2191280000000 2273428000000 2371027000000 2265047000000 2217576000000 2350175000000 .. ..
40 United States USA Imports of goods and services (current US$) NE.IMP.GNFS.CD 22800000000 22700000000 25000000000 26100000000 28100000000 31500000000 37100000000 39900000000 46600000000 50500000000 55760000000 62342000000 74216000000 91159000000 127465000000 122730000000 151146000000 182443000000 212250000000 252674000000 293828000000 317758000000 303184000000 328638000000 405107000000 417229000000 452867000000 508713000000 553993000000 591031000000 629728000000 623544000000 667791000000 719973000000 813424000000 902572000000 963966000000 1055774000000 1115690000000 1248612000000 1471305000000 1392565000000 1424143000000 1539304000000 1796706000000 2026418000000 2243538000000 2379280000000 2560143000000 1978447000000 2360183000000 2682456000000 2759851000000 2764210000000 2879284000000 2786461000000 2738146000000 2928596000000 .. ..

Above are two raw dataframes of the data from the the CSV file obtained from the world bank. One of them shows world statistics and the other shows statistics from the United States. The list contriesData in our code simply contains a dataframe for each country or region that the World Bank provides. If you wish to see a certain country you can change the index of display(CountriesData[n]) to be whatever country you wish to see.

2.1 Creation of GDP Data

The predictionData dataframe consists of variables that are known to calculate GDP. The dataframe was built using the worldData dataframe and consists of columns for country, year, GDP per capita (current US), GDP per capita growth (annual percentage), final consumption expenditure (percentage of GDP), final consumption expenditure (current US), general government final consumption expenditure (current US), general government final consumption expenditure (percentage of GDP), foreign direct investment, net inflows (percentage of GDP), foreign direct investment, net inflows (BoP, current US), exports of goods and services (current US), imports of goods and services (current US), exports of goods and services (percentage of GDP), and imports of goods and services (% of GDP).

The dataframe contains one row for each combination of country and year, with the remaining values in the row corresponding to the variables listed above. This was done to enable easy plotting when analyzing the data. However, only years from 2000 to 2015 were included to ensure minimal missing data, as years prior to 2000 were more likely to be missing data. An important factor to note that it is there was no data point calculating total investments for any nation. Therefore we used one metric of investment which was Foreign Direct Investment as an indicator of investment for a country.

In [45]:
predictionData = pd.DataFrame(columns = ["Country Name", "Year"])

countriesList = worldData["Country Name"]
for name in countriesList.unique():
        counter = 2000
        while counter <= 2015:
            predictionData = predictionData.append({"Country Name": name, "Year": counter}, ignore_index=True)
            counter += 1

predictionData["GDP per capita (current US$)"] = 0.0
predictionData["GDP per capita growth (annual %)"] = 0.0
predictionData["Final consumption expenditure (% of GDP)"] = 0.0
predictionData["Final consumption expenditure (current US$)"] = 0.0
predictionData["General government final consumption expenditure (current US$)"] = 0.0
predictionData["General government final consumption expenditure (% of GDP)"] = 0.0
predictionData["Foreign direct investment, net inflows (% of GDP)"] = 0.0
predictionData["Foreign direct investment, net inflows (BoP, current US$)"] = 0.0
predictionData["Exports of goods and services (current US$)"] = 0.0
predictionData["Imports of goods and services (current US$)"] = 0.0
predictionData["Exports of goods and services (% of GDP)"] = 0.0
predictionData["Imports of goods and services (% of GDP)"] = 0.0
predictionData["GDP growth (annual %)"] = 0.0

country = "Afghanistan"
countryCounter = 0
for index, row in worldData.iterrows():
    if row["Country Name"] != country:
        countryCounter += 1
        country = row["Country Name"]
    if row["Series Name"] in predictionData.columns:
        counter = 2000
        while counter <= 2015:
            yearString = str(counter) + " [YR" + str(counter) + "]"
            indx = countryCounter * 16 + (counter - 2000)
            if row[yearString] != "..":
                predictionData.at[indx, row["Series Name"]] = row[yearString]
            else:
                predictionData.at[indx, row["Series Name"]] = np.nan
            counter += 1

predictionData.drop(predictionData.index[3472:], inplace=True)    
        
predictionData
Out[45]:
Country Name Year GDP per capita (current US$) GDP per capita growth (annual %) Final consumption expenditure (% of GDP) Final consumption expenditure (current US$) General government final consumption expenditure (current US$) General government final consumption expenditure (% of GDP) Foreign direct investment, net inflows (% of GDP) Foreign direct investment, net inflows (BoP, current US$) Exports of goods and services (current US$) Imports of goods and services (current US$) Exports of goods and services (% of GDP) Imports of goods and services (% of GDP) GDP growth (annual %)
0 Afghanistan 2000 NaN NaN NaN NaN NaN NaN NaN 170000.0 NaN NaN NaN NaN NaN
1 Afghanistan 2001 NaN NaN NaN NaN NaN NaN NaN 680000.0 NaN NaN NaN NaN NaN
2 Afghanistan 2002 179.426494 NaN 132.122532 5.357802e+09 3.453616e+08 8.516561 1.232992 50000000.0 1.329281e+09 2.851980e+09 32.779841 70.329362 NaN
3 Afghanistan 2003 190.684009 3.868362 147.518576 6.661295e+09 4.482138e+08 9.925977 1.280017 57800000.0 2.003508e+09 3.250916e+09 44.368948 71.993593 8.832278
4 Afghanistan 2004 211.381970 -2.875184 139.652624 7.299329e+09 5.587055e+08 10.689296 3.575819 186900000.0 1.616202e+09 3.170767e+09 30.921587 60.663923 1.414118
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
3467 Zimbabwe 2011 1093.654002 12.452857 102.467158 1.444984e+10 2.647483e+09 18.773919 2.441511 344300000.0 4.907581e+09 7.708917e+09 34.800802 54.665725 14.193913
3468 Zimbabwe 2012 1304.969802 14.701173 113.979050 1.950734e+10 3.423990e+09 20.005957 2.044131 349850000.0 4.306653e+09 8.386153e+09 25.163254 48.999281 16.665429
3469 Zimbabwe 2013 1430.000818 0.192501 105.471498 2.013558e+10 3.520135e+09 18.438697 1.954060 373050000.0 4.197687e+09 7.000436e+09 21.987759 36.668735 1.989493
3470 Zimbabwe 2014 1434.899340 0.596198 103.172100 2.011394e+10 3.813379e+09 19.560283 2.425173 472800000.0 4.080441e+09 6.578075e+09 20.930146 33.741470 2.376929
3471 Zimbabwe 2015 1445.071062 0.100456 108.392819 2.163859e+10 3.768541e+09 18.877513 1.999687 399200000.0 3.824969e+09 7.503865e+09 19.160176 37.588635 1.779873

3472 rows × 15 columns

2.2 Creation of Miscellenous Data

The miscellaneousData dataframe consists of variables we thought would have a correlation to GDP growth. The dataframe was built using the worldData dataframe and consists of columns for country, year, GDP per capita (current US), employment in agriculture (% of total employment) (modeled ILO estimate), employment in industry (% of total employment) (modeled ILO estimate), employment in services (% of total employment) (modeled ILO estimate), current health expenditure (% of GDP), fertility rate, total (births per woman), government expenditure on education, total (% of GDP), prevalence of undernourishment (% of population), adjusted net enrollment rate, primary (% of primary school age children).

The dataframe contains one row for each combination of country and year, with the remaining values in the row corresponding to the variables listed above. This was done to enable easy plotting when analyzing the data. However, only years from 2000 to 2015 were included to ensure minimal missing data, as years prior to 2000 were more likely to be missing data.

In [46]:
miscellaneousData = pd.DataFrame(columns = ["Country Name", "Year"])

countriesList = worldData["Country Name"]
for name in countriesList.unique():
    counter = 2000
    while counter <= 2015:
        miscellaneousData = miscellaneousData.append({"Country Name": name, "Year": counter}, ignore_index=True)
        counter += 1

miscellaneousData["GDP per capita (current US$)"] = 0.0
miscellaneousData["Employment in agriculture (% of total employment) (modeled ILO estimate)"] = 0.0
miscellaneousData["Employment in industry (% of total employment) (modeled ILO estimate)"] = 0.0
miscellaneousData["Employment in services (% of total employment) (modeled ILO estimate)"] = 0.0
miscellaneousData["Current health expenditure (% of GDP)"] = 0.0
miscellaneousData["Fertility rate, total (births per woman)"] = 0.0
miscellaneousData["Government expenditure on education, total (% of GDP)"] = 0.0
miscellaneousData["Prevalence of undernourishment (% of population)"] = 0.0
miscellaneousData["Adjusted net enrollment rate, primary (% of primary school age children)"] = 0.0

country = "Afghanistan"
countryCounter = 0
for index, row in worldData.iterrows():
    if row["Country Name"] != country:
        countryCounter += 1
        country = row["Country Name"]
    if row["Series Name"] in miscellaneousData.columns:
        counter = 2000
        while counter <= 2015:
            yearString = str(counter) + " [YR" + str(counter) + "]"
            indx = countryCounter * 16 + (counter - 2000)
            if row[yearString] != "..":
                miscellaneousData.at[indx, row["Series Name"]] = row[yearString]
            else:
                miscellaneousData.at[indx, row["Series Name"]] = np.nan
            counter += 1

miscellaneousData.drop(predictionData.index[3472:], inplace=True) 

miscellaneousData
Out[46]:
Country Name Year GDP per capita (current US$) Employment in agriculture (% of total employment) (modeled ILO estimate) Employment in industry (% of total employment) (modeled ILO estimate) Employment in services (% of total employment) (modeled ILO estimate) Current health expenditure (% of GDP) Fertility rate, total (births per woman) Government expenditure on education, total (% of GDP) Prevalence of undernourishment (% of population) Adjusted net enrollment rate, primary (% of primary school age children)
0 Afghanistan 2000 NaN 69.094002 8.007000 22.899000 NaN 7.485000 NaN 46.100000 NaN
1 Afghanistan 2001 NaN 70.317001 7.434000 22.250000 NaN 7.387000 NaN 46.400000 NaN
2 Afghanistan 2002 179.426494 63.477001 10.195000 26.327999 9.443391 7.272000 NaN 43.700000 NaN
3 Afghanistan 2003 190.684009 62.699001 10.437000 26.864000 8.941259 7.148000 NaN 39.800000 NaN
4 Afghanistan 2004 211.381970 62.534000 10.715000 26.750000 9.808473 7.016000 NaN 36.100000 NaN
... ... ... ... ... ... ... ... ... ... ... ...
4203 Upper middle income 2011 7533.005863 28.052286 26.417175 45.530577 5.602177 1.851727 NaN 8.606411 96.25452
4204 Upper middle income 2012 8009.525571 26.921258 26.603998 46.474748 5.634902 1.862169 NaN 8.231676 96.24667
4205 Upper middle income 2013 8448.564499 25.334323 26.961800 47.703906 5.668765 1.866795 NaN 7.821780 96.17663
4206 Upper middle income 2014 8651.290227 23.802564 27.365820 48.831615 5.770740 1.874864 NaN 7.499243 96.22423
4207 Upper middle income 2015 8032.489459 23.107148 27.141853 49.751005 5.810011 1.879896 NaN 7.316290 96.38323

4208 rows × 11 columns

Exploratory Analysis and Data Visualization

3.0 GDP Statistics

The following table below provides us with the statistics from the variables that are involved with calculating GDP. These only utilize the information contained in data for calculating GDP.

In [5]:
predictionData.describe()
Out[5]:
GDP per capita (current US$) GDP per capita growth (annual %) Final consumption expenditure (% of GDP) Final consumption expenditure (current US$) General government final consumption expenditure (current US$) General government final consumption expenditure (% of GDP) Foreign direct investment, net inflows (% of GDP) Foreign direct investment, net inflows (BoP, current US$) Exports of goods and services (current US$) Imports of goods and services (current US$) Exports of goods and services (% of GDP) Imports of goods and services (% of GDP) GDP growth (annual %)
count 3270.000000 3241.000000 2755.000000 2.740000e+03 2.729000e+03 2739.000000 3027.000000 3.153000e+03 2.989000e+03 2.989000e+03 3004.000000 3004.000000 3241.000000
mean 13819.110697 2.388447 80.727680 2.452857e+11 5.528432e+10 16.521889 8.572102 9.019164e+09 8.444386e+10 8.265407e+10 43.255086 49.490405 3.862119
std 21923.158400 5.629381 19.851309 1.021754e+12 2.085425e+11 8.029543 48.499468 3.481636e+10 2.288171e+11 2.397827e+11 31.949753 30.206760 5.799875
min 111.927224 -62.378077 12.173205 1.786634e+08 3.088705e+07 0.951747 -58.322880 -2.967943e+10 7.960111e+06 1.144018e+07 0.099465 0.064705 -62.075920
25% 1253.937370 0.190517 71.252935 5.264093e+09 9.077000e+08 11.682325 1.256553 7.977169e+07 1.367965e+09 2.129926e+09 24.455476 30.263562 1.551189
50% 4311.495421 2.322977 79.812924 1.876980e+10 3.391895e+09 15.745053 3.137152 5.552521e+08 7.503513e+09 8.350275e+09 36.430283 43.609913 3.815718
75% 16949.803274 4.596447 90.965881 1.114418e+11 2.366861e+10 19.488833 6.506880 3.352997e+09 5.508020e+10 4.926399e+10 53.251363 60.658136 6.195256
max 189170.895671 121.779543 241.973940 1.490724e+13 2.612706e+12 135.809438 1282.632552 7.340103e+11 2.462839e+12 2.879284e+12 433.223529 427.576471 123.139555

Although this information is useful to look at when looking at the big picture, it would be more interesting to see how these variables have changed overtime. In the boxplots below we seperate each datapoint as its own boxplot and plot them by five year intervals.

3.1 GDP Box Plots

The box plot below shows that although the median GDP per capita has slowly been increasing, the wealthiest 50\% of nations are making significantly more progress than the poorest 50 \% of nations. According to Investopedia, "As a rule of thumb, countries with developed economies have GDP per capitas of at least \$12,000(USD), although some economists believe \\$25,000 (USD) is a more realistic measurement threshold." As shown below, most only about 25-50\% of countries are considered developed depending on what your threshold is for developed countries.

In [6]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="GDP per capita (current US$)", data=predictionData, showfliers=False).set_title("Year vs. GDP per capita")

The box plot below has shown how GDP and GDP per capita has grown throughout the years. As you can see there is a large drop in 2009 due to the great recession. Otherwise GDP growth has stayed very consistent in terms of growth throughout the years.

In [8]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="GDP growth (annual %)", data=predictionData, showfliers=False).set_title("Year vs. GDP growth (annual %)")
In [9]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="GDP per capita growth (annual %)", data=predictionData, showfliers=False).set_title("Year vs. GDP per capita growth (annual %)")
In [11]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="Final consumption expenditure (current US$)", data=predictionData, showfliers=False).set_title("Year vs. Final consumption expenditure")
In [13]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="General government final consumption expenditure (current US$)", data=predictionData, showfliers=False).set_title("Year vs. General government final consumption expenditure")
In [15]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="Foreign direct investment, net inflows (BoP, current US$)", data=predictionData, showfliers=False).set_title("Year vs. Foreign direct investment, net inflows (BoP, current US$)")
In [17]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="Exports of goods and services (current US$)", data=predictionData, showfliers=False).set_title("Exports of goods and services (current US$)")
In [19]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.boxplot(x="Year", y="Imports of goods and services (current US$)", data=predictionData, showfliers=False).set_title("Imports of goods and services (current US$)")

3.2 Observations from GDP Data

From the box plots we are able to observe that although every economy is improving in every single category, the countries in the top 50 \% are improving at a much greater rate than the other countries in the bottom 50\%. However this can also be attributed to the fact that countries with lower GDPs won't grow as quickly quantitativly because they start out off with lower economical stock. If we plot out the GDP growth by annual percentage for nations that are high income and nations from the least developed countries, we'll see that the nations from the least developed countries are growing at a faster rate. In fact according to the Nasdq, the five fastest growing nations are all in developing countries.

In [ ]:
richvsPoor = pd.DataFrame(columns = ["Country Name", "Year"])

countriesList = worldData["Country Name"]
for name in countriesList.unique():
    counter = 2000
    while counter <= 2015:
        richvsPoor = richvsPoor.append({"Country Name": name, "Year": counter}, ignore_index=True)
        counter += 1

richvsPoor["GDP growth (annual %)"] = 0.0

country = "Afghanistan"
countryCounter = 0
for index, row in worldData.iterrows():
    if row["Country Name"] != country:
        countryCounter += 1
        country = row["Country Name"]
    if row["Series Name"] in richvsPoor.columns:
        counter = 2000
        while counter <= 2015:
            yearString = str(counter) + " [YR" + str(counter) + "]"
            indx = countryCounter * 16 + (counter - 2000)
            if row[yearString] != "..":
                richvsPoor.at[indx, row["Series Name"]] = row[yearString]
            else:
                richvsPoor.at[indx, row["Series Name"]] = np.nan
            counter += 1

graphData = pd.DataFrame(columns=richvsPoor.columns) 
graphData2 = pd.DataFrame(columns=richvsPoor.columns) 
richvsPoor.drop(richvsPoor.index[:3696], inplace=True)
for index, row in richvsPoor.iterrows():
    if row["Country Name"] == "Least developed countries: UN classification":
        graphData = graphData.append(row, ignore_index=True)
    elif row["Country Name"] == "High income":
        graphData2 = graphData2.append(row, ignore_index=True)
In [21]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.lineplot(x="Year", y="GDP growth (annual %)", data=graphData).set_title("Growth of least developed countries")
In [22]:
sns.set(rc={'figure.figsize':(15,10)})
box = sns.lineplot(x="Year", y="GDP growth (annual %)", data=graphData2).set_title("Growth of most developed countries")

This is due in part because of the solow model. According to the University of Pittsburgh.

“If the Solow model is correct, and if growth is due to capital accumulation , we should expect to find

Growth will be very strong when countries first begin to accumulate capital, and will slow down as the process of accumulation continues. Japanese growth was stronger in the 1950s and 1960s than it is now. Countries will tend to converge in output per capita and in standard of living. As Hong Kong, Singapore, Taiwan (etc) accumulate capital, their standard of living will catch up with the initially more developed countries. When all countries have reached a steady state, all countries will have the same standard of living (at least if they have the same production function, which for most industrial goods is a reasonable assumption).”

This model helps explain why poorer countries are growing their economies at a faster rate than their developed nations. Of course there are always exceptions and in some cases developed countries grow faster than developing ones, but the general trend still exists.

3.3 Miscellaneous Joint Plots

The following table below provides us with the statistics from the miscellaneous variables that we thought would correlate to GDP.

In [24]:
miscellaneousData.describe()
Out[24]:
GDP per capita (current US$) Employment in agriculture (% of total employment) (modeled ILO estimate) Employment in industry (% of total employment) (modeled ILO estimate) Employment in services (% of total employment) (modeled ILO estimate) Current health expenditure (% of GDP) Fertility rate, total (births per woman) Government expenditure on education, total (% of GDP) Prevalence of undernourishment (% of population) Adjusted net enrollment rate, primary (% of primary school age children)
count 3990.000000 3712.000000 3712.000000 3712.000000 3704.000000 3937.000000 1871.000000 3324.000000 2424.000000
mean 12840.332986 30.099654 19.810493 50.089872 6.171237 2.978158 4.503243 12.784069 89.892001
std 20578.005360 23.758027 7.912705 18.568244 2.789795 1.517292 1.816796 11.509354 12.185349
min 111.927224 0.180000 2.051000 5.377000 1.024978 0.860000 0.787440 2.500000 26.895430
25% 1272.155890 7.963750 14.136000 35.154501 4.346333 1.800000 3.216830 3.000000 87.166593
50% 4152.963263 25.051000 20.727506 51.589001 5.509363 2.482996 4.363220 9.000000 94.810600
75% 15141.364903 48.155857 25.010750 65.353114 7.719829 4.007000 5.490590 18.755584 97.795216
max 189170.895671 92.547997 59.576000 87.990997 27.417822 7.679000 18.161070 71.500000 100.000000

To illustrate the relationship between the miscellaneous variables and GDP per capita, we used joint plots, which are a combination of one scatter plot representing the correlation and two bar plots representing the Gaussian distribution of each of the variables respectively. The joint plots show correlation between several key data points and the GDP per capita of countries.

Employment in Agriculture vs GDP per capita

In [61]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Employment in agriculture (% of total employment) (modeled ILO estimate)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Employment in Industry vs GDP per capita

In [26]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Employment in industry (% of total employment) (modeled ILO estimate)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Employment in Services vs GDP per capita

In [27]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Employment in services (% of total employment) (modeled ILO estimate)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Current Health Expenditure vs GDP per capita

In [28]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Current health expenditure (% of GDP)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Fertility Rate vs GDP per capita

In [29]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Fertility rate, total (births per woman)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Prevalence of Undernourishment vs GDP per capita

In [30]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Prevalence of undernourishment (% of population)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

Adjusted Net Enrollment Rate in Agriculture vs GDP per capita

In [65]:
sns.set(rc={'figure.figsize':(15,10)})
joint = sns.jointplot(x="Adjusted net enrollment rate, primary (% of primary school age children)", y="GDP per capita (current US$)", data=miscellaneousData, height = 13)

3.4 Observations from Miscellaneous Data

There are some obvious correlations between GDP per capita and data points such as undernourishment, primary school enrollment, and the fertility rate. But there were also a couple of interesting caveats that were less obvious. For example, nations that had low GDP per capitas tended to have high percentages of its workforce in the agricultural industry. Also nations that had high GDP per capitas tended to have high percentages of its workforce in the service industry. But there was a healthy mix of economies when it came to high percentages of their workforce in industry. Some nations with high industry employment came from relatively rich countries and some places from very poor nations had high levels of employment in industry. The general trend was still that developing nations with their GDP per capitas near the average tended to have the most concentration on industry work. Also nations that tended to spend more of their % of GDP on healthcare tended to be richer nations rather than poorer ones, although the correlation for that data point was not as strong.

Analysis, Hypothesis Testing, and Machine Learning

4.0 Linear Regression

For the analysis, hypothesis testing, and machine learning part of this tutorial, we will be performing linear regression to model our data and thus better observe how different factors influence GDP.

To do so, we must organize the data used for the box plots (predictionData) from earlier since we will be first do linear regressions on GDP per capita, final consumption expenditure, general government final consumption expenditure, foreign direct investment, exports and imports of goods and services. We do this by copying predictionData into a separate dataframe, dropping irrelevant columns including CountryName, and grouping the data by year such that we get the mean for GDP per capita, final consumption expenditure, general government final consumption expenditure, foreign direct investment, exports and imports of goods and services for each year.

In [47]:
linearData = predictionData.copy()

linearData = linearData.drop(columns=['Country Name', 'GDP per capita growth (annual %)', 'Final consumption expenditure (% of GDP)', 'General government final consumption expenditure (% of GDP)', 'Foreign direct investment, net inflows (% of GDP)', 'Exports of goods and services (% of GDP)', 'Imports of goods and services (% of GDP)' , 'GDP growth (annual %)'])
linearData = linearData.groupby(['Year']).mean()

linearData
Out[47]:
GDP per capita (current US$) Final consumption expenditure (current US$) General government final consumption expenditure (current US$) Foreign direct investment, net inflows (BoP, current US$) Exports of goods and services (current US$) Imports of goods and services (current US$)
Year
2000 8262.088508 1.535055e+11 3.249478e+10 7.806785e+09 4.360903e+10 4.357668e+10
2001 8177.092747 1.540718e+11 3.292009e+10 4.186021e+09 4.265312e+10 4.278136e+10
2002 8835.874793 1.589575e+11 3.437985e+10 3.859754e+09 4.307683e+10 4.277253e+10
2003 10172.606619 1.770522e+11 3.897877e+10 3.787026e+09 4.977109e+10 4.940153e+10
2004 11533.833415 1.950024e+11 4.307976e+10 5.120561e+09 5.965168e+10 5.896791e+10
2005 12644.269814 2.085911e+11 4.600748e+10 7.838510e+09 6.799933e+10 6.709944e+10
2006 13898.218389 2.210146e+11 4.910813e+10 1.115341e+10 7.732686e+10 7.580359e+10
2007 15440.620704 2.456418e+11 5.476545e+10 1.575084e+10 8.954344e+10 8.753747e+10
2008 16636.599187 2.696049e+11 6.173632e+10 1.239386e+10 1.023520e+11 1.003934e+11
2009 14763.123772 2.612132e+11 6.192258e+10 7.019040e+09 8.203603e+10 8.021667e+10
2010 15492.676635 2.785346e+11 6.505276e+10 9.477995e+09 9.756029e+10 9.483471e+10
2011 17073.803772 3.044211e+11 7.058089e+10 1.174635e+10 1.154020e+11 1.121817e+11
2012 16968.367601 3.121093e+11 7.164700e+10 1.025617e+10 1.173145e+11 1.137774e+11
2013 17555.761424 3.189568e+11 7.248834e+10 1.080568e+10 1.193131e+11 1.157870e+11
2014 17524.352978 3.289834e+11 7.396878e+10 9.370995e+09 1.219400e+11 1.189207e+11
2015 15729.256623 3.149450e+11 7.010390e+10 1.324258e+10 1.100418e+11 1.074029e+11

Now, we may perform linear regression on GDP per capita (current USD) over time by creating a scatter plot containing years on the x-axis and GDP per capita (current USD) on the y-axis and then fitting a best fit line using LinearRegression() over the scatter plot.

In [48]:
text = "GDP per capita (current US$)"

years = []
GDP_per_capita = []
for index, row in linearData.iterrows():
    years.append(index)
    GDP_per_capita.append(row[0])

plt.plot(years,GDP_per_capita,'o')


years_ = []
for y in years:
    years_.append([y])


clf = linear_model.LinearRegression()
clf.fit(years_,GDP_per_capita)
predicted = clf.predict(years_)

plt.plot(years,predicted)
plt.title("{} over time".format(text))
plt.xlabel("Year")
plt.ylabel("GDP per capita (current US$)")
plt.show()

In the resulting plot, we can clearly see a positive trend from just the scatter plot alone, and the linear model confirms this since it produces a linear line with a positive slope. Thus, we can confirm that GDP per capita grows over time.

Next, we will find the R^2 value to see how well the linear regression fits our data by using clf.score().

In [49]:
print(clf.score(years_,GDP_per_capita))
0.8481106413800102

Our results show R^2 being 0.848 which means that the linear regression fits the data pretty well as it is closer to 1 which signifies a perfect fit than 0 which means no meaningful fit.

Moving on, we must observe the fact that our scatter plot seems to flatten after 2010, so we must see if a polynomial of 2 degrees fits our data better.

In [50]:
plt.plot(years,GDP_per_capita,'o')

polynomial_Feats = PolynomialFeatures(degree=2)
polynomial_years = polynomial_Feats.fit_transform(years_)
clf.fit(polynomial_years,GDP_per_capita)

polynomial_predict = clf.predict(polynomial_years)
plt.title("{} over time".format(text))
plt.xlabel("Year")
plt.ylabel("GDP per capita (current US$)")
plt.plot(years,polynomial_predict)

plt.show()
print(clf.score(polynomial_years,GDP_per_capita))
0.9437415420076714

Here we have a R^2 value of 0.944 which is much better than our linear fit.

Now we can try a polynomial with 3 degrees.

In [51]:
plt.plot(years,GDP_per_capita,'o')

polynomial_Feats = PolynomialFeatures(degree=3)
polynomial_years = polynomial_Feats.fit_transform(years_)
clf.fit(polynomial_years,GDP_per_capita)

polynomial_predict = clf.predict(polynomial_years)
plt.title("{} over time".format(text))
plt.xlabel("Year")
plt.ylabel("GDP per capita (current US$)")
plt.plot(years,polynomial_predict)

plt.show()
print(clf.score(polynomial_years,GDP_per_capita))
0.9560257134769029

Now we have an R^2 value of 0.956 which is slightly better than the last. However, must must take into account that the curve downwards seems to be heavily influenced by one data point on the scatter plot.

Next, we can repeat the process of fitting linear regressions to final consumption expenditure, general government final consumption expenditure, foreign direct investment, exports and imports of goods and services.

In [52]:
def plot_GDP_predictors(x,y,linearData):
    years = []
    GDP_predictor = []
    for index, row in linearData.iterrows():
        years.append(index)
        GDP_predictor.append(row[y])

    plt.plot(years,GDP_predictor,'o')


    years_ = []
    for y in years:
        years_.append([y])

    clf = linear_model.LinearRegression()
    clf.fit(years_,GDP_predictor)
    predicted = clf.predict(years_)
    
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    
    r_squared = clf.score(years_,GDP_predictor)
    plt.plot(years,predicted,label="linear-regression R^2:{}".format(round(r_squared,2)))
    plt.legend()
    plt.show()
    
    plt.plot(years,GDP_predictor,'o')

    polynomial_Feats = PolynomialFeatures(degree=2)
    polynomial_years = polynomial_Feats.fit_transform(years_)
    clf.fit(polynomial_years,GDP_predictor)

    polynomial_predict = clf.predict(polynomial_years)
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    plt.plot(years,polynomial_predict)

    plt.show()
    print(clf.score(polynomial_years,GDP_predictor))
    
    polynomial_Feats = PolynomialFeatures(degree=3)
    polynomial_years = polynomial_Feats.fit_transform(years_)
    clf.fit(polynomial_years,GDP_predictor)

    polynomial_predict = clf.predict(polynomial_years)
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    plt.plot(years,polynomial_predict)

    plt.show()
    print(clf.score(polynomial_years,GDP_predictor))
In [54]:
plot_GDP_predictors("Final consumption expenditure (current US$)",1,linearData)
plot_GDP_predictors("General government final consumption expenditure (current US$)",2,linearData)
plot_GDP_predictors("Foreign direct investment, net inflows (BoP, current US$)",3,linearData)
plot_GDP_predictors("Exports of goods and services (current US$)",4,linearData)
plot_GDP_predictors("Imports of goods and services (current US$)",5,linearData)
0.9756333475823485
0.9901472894559978
0.9698707926452302
0.9945338591617091
0.4399749833373702
0.4481278754534001
0.9289064425890834
0.9528024570920761
0.9279640329103218
0.9507969423864838

Our results show that final consumption expenditure, general government final consumption expenditure, foreign direct investment net inflows, exports and imports of goods and services all trend upwards, but it is important to note that the R^2 value for foreign direct investment, net inflows is sub 0.5

Next, we can repeat the same process for linear regression with our data from miscelleaneousData.

In [55]:
linearmiscData = miscellaneousData.copy()

linearmiscData = linearmiscData.drop(columns=['Country Name'])
linearmiscData = linearmiscData.groupby(['Year']).mean()

linearmiscData
Out[55]:
GDP per capita (current US$) Employment in agriculture (% of total employment) (modeled ILO estimate) Employment in industry (% of total employment) (modeled ILO estimate) Employment in services (% of total employment) (modeled ILO estimate) Current health expenditure (% of GDP) Fertility rate, total (births per woman) Government expenditure on education, total (% of GDP) Prevalence of undernourishment (% of population) Adjusted net enrollment rate, primary (% of primary school age children)
Year
2000 7674.059169 33.266764 19.793678 46.939581 5.669040 3.236639 4.331777 15.608488 86.229305
2001 7601.921824 32.926700 19.719297 47.354022 5.794969 3.179547 4.583330 15.163513 87.836950
2002 8187.985866 32.584507 19.628847 47.786637 5.849889 3.128455 4.607709 14.801800 88.548263
2003 9406.302141 32.208138 19.612557 48.179314 5.982862 3.098433 4.614258 14.414298 88.443202
2004 10662.460932 31.692356 19.725695 48.581966 6.049743 3.074591 4.283678 14.001038 89.189588
2005 11680.119174 31.291222 19.779725 48.929095 6.078361 3.043457 4.455298 13.548731 89.657071
2006 12821.145539 30.756350 19.936304 49.307399 6.068830 3.010137 4.372100 13.016966 89.568532
2007 14274.433976 30.206053 20.119412 49.674539 6.069712 2.984493 4.405553 12.612164 90.196741
2008 15415.637317 29.806488 20.141725 50.051844 6.071279 2.962120 4.496413 12.255640 90.401707
2009 13726.989250 29.397005 19.778971 50.824109 6.441899 2.931903 4.798666 11.908968 90.550490
2010 14443.165491 28.962893 19.776857 51.260184 6.383492 2.906781 4.597329 11.582867 90.931575
2011 15925.555971 28.567611 19.812458 51.619952 6.301643 2.878981 4.314016 11.294691 90.525424
2012 15843.598688 28.079389 19.768557 52.152043 6.326390 2.844951 4.379606 11.235379 91.616897
2013 16376.861945 27.709204 19.727247 52.563575 6.435365 2.817140 4.502918 11.115239 91.031555
2014 16377.904435 27.263746 19.812731 52.923552 6.540891 2.794485 4.597896 11.059017 91.054105
2015 14725.161619 26.876034 19.833833 53.290137 6.666070 2.760563 4.721180 11.094242 90.788136
In [56]:
def plot_GDP_misc(x,y,linearmiscData):
    years = []
    GDP_predictor = []
    for index, row in linearmiscData.iterrows():
        years.append(index)
        GDP_predictor.append(row[y])

    plt.plot(years,GDP_predictor,'o')


    years_ = []
    for y in years:
        years_.append([y])

    clf = linear_model.LinearRegression()
    clf.fit(years_,GDP_predictor)
    predicted = clf.predict(years_)
    
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    
    r_squared = clf.score(years_,GDP_predictor)
    plt.plot(years,predicted,label="linear-regression R^2:{}".format(round(r_squared,2)))
    plt.legend()
    plt.show()
    
    plt.plot(years,GDP_predictor,'o')

    polynomial_Feats = PolynomialFeatures(degree=2)
    polynomial_years = polynomial_Feats.fit_transform(years_)
    clf.fit(polynomial_years,GDP_predictor)

    polynomial_predict = clf.predict(polynomial_years)
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    plt.plot(years,polynomial_predict)

    plt.show()
    print(clf.score(polynomial_years,GDP_predictor))
    
    polynomial_Feats = PolynomialFeatures(degree=3)
    polynomial_years = polynomial_Feats.fit_transform(years_)
    clf.fit(polynomial_years,GDP_predictor)

    polynomial_predict = clf.predict(polynomial_years)
    plt.title("{} over time".format(x))
    plt.xlabel("Year")
    plt.ylabel(x)
    plt.plot(years,polynomial_predict)

    plt.show()
    print(clf.score(polynomial_years,GDP_predictor))
In [57]:
plot_GDP_predictors("Employment in agriculture (% of total employment) (modeled ILO estimate)",1,linearmiscData)
plot_GDP_predictors("Employment in industry (% of total employment) (modeled ILO estimate)",2,linearmiscData)
plot_GDP_predictors("Employment in services (% of total employment) (modeled ILO estimate)",3,linearmiscData)
plot_GDP_predictors("Current health expenditure (% of GDP)",4,linearmiscData)
plot_GDP_predictors("Fertility rate, total (births per woman)",5,linearmiscData)
plot_GDP_predictors("Government expenditure on education, total (% of GDP)",6,linearmiscData)
plot_GDP_predictors("Prevalence of undernourishment (% of population)",7,linearmiscData)
plot_GDP_predictors("Adjusted net enrollment rate, primary (% of primary school age children)",8,linearmiscData)
0.9987835752393046
0.9994047894666219
0.2084906604232991
0.2108347351276589
0.9976542268530653
0.9981311430679118
0.915137645330299
0.9275785732289996
0.9957409110934995
0.9985018304570081
0.09087046221994255
0.13815744124726492
0.9927340070601925
0.9993474157772979
0.9518391500785182
0.9536391551903989

Results here show that employment in agriculture trends downwards over time, employment in industry over time cannot be conclusive, employment in services trends upwards over time, current health expenditure trends upwards over time, fertility rate trends downwards over time, government expenditure in education over time is not conclusive, prevalence of undernourishment trends downwards over time, and adjusted net enrollment rate trends upwards over time.

Insight and Policy Decision

5.0 Summary

For this project, we wanted to analyze the effect that various data points have on the economies of different countries. In order to do this we first collected data from the World Bank data set that included variables that are known to calculate GDP as well as some miscellaneous variables that we thought could be used to visualize GDP growth. We then broke this data into two different data frames, with one representing the variables used to calculate GDP and the other representing the variables we thought could be used to visualize GDP. The data frames were then transformed, so that the columns consisted of variables, with each row representing an instance of a country and a year. We then performed analyses on the two data frames by plotting the correlation between the different variables to GDP per capita. Linear regression was then used for in-depth analysis as we tried to visualize the growth of GDP in countries over time.

5.1 Insight

With this data we concluded some aspects of economics which we were already aware of and found out some information that suprised us. For example, there was very little correlation between GDP per capita and the percentage of GDP spent on education. But our predicitons about lower birth rates in more developed countries shown to be supported by the data we plotted. Visualizing economics through data science is an extremely important field, and the large amount of information organizations such as the World Bank and the IMF give solidifies that. With this information, economists can attempt to form more accurate models and predictions that could impact billions of people. Hopefully, this tutorial has allowed you to get a glimpse on the potential visualizing databanks such as these can have on our perceptions and decisions regarding important economic topics.